[go: up one dir, main page]

Skip to main content

Advertisement

Log in

An intelligent serological SERS test toward early-stage hepatocellular carcinoma diagnosis through ultrasensitive nanobiosensing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Early or very early detection of hepatocellular carcinoma (HCC) is an effective means to resolve the low cure rates, but there currently lacks a method that fulfills clinical requirements. One of the most prospective approaches to detecting early-stage HCC is directly testing a compendium of disease-relevant biomolecules contained within human serum through surface-enhanced Raman scattering (SERS) nanobiosensing and recognizing the biomolecular patterns. We report a novel Si-based bimetallic nanoensembles-functionalized SERS substrate (its analytical enhancement factor reaches 1.47 × 1012) and introduce an ultrasensitive nanobiosensing for capturing the subtle characteristic changes in SERS spectra caused by HCC, hepatitis B, or cirrhosis. Toward early diagnosis, we created an intelligent serological test with this nanobiosensing and the deep learning algorithm to gain key biomolecular phenotypes of early-stage HCC. Using clinical samples from four target populations (normal, HCC, cirrhosis, and hepatitis B), the proof-of-principle result indicates that the test yielded a predictive accuracy of 98.75% on a held-out dataset (randomly drew 4 out of 28 samples per population). On the same held-out dataset, the sensitivity and specificity of the test were both 100% for distinguishing HCC. Such a new-concept liquid biopsy could provide an opportunity for early diagnosis of HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phallen, J.; Sausen, M.; Adleff, V.; Leal, A.; Hruban, C.; White, J.; Anagnostou, V.; Fiksel, J.; Cristiano, S.; Papp, E. et al. Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 2017, 9, eaan2415.

    Article  CAS  Google Scholar 

  2. Gorgannezhad, L.; Umer, M.; Islam, M. N.; Nam-Trung, N.; Shiddiky, M. J. A. Circulating tumor DNA and liquid biopsy: Opportunities, challenges, and recent advances in detection technologies. Lab Chip 2018, 18, 1174–1196.

    Article  CAS  Google Scholar 

  3. Wang, Y.; Zheng, D. L.; Tan, Q. L.; Wang, M. X.; Gu, L. Q. Nanopore-based detection of circulating microRNAs in lung cancer patients. Nat. Nanotechnol. 2011, 6, 668–674.

    Article  CAS  Google Scholar 

  4. Xue, T. Y.; Liang, W. Y.; Li, Y. W.; Sun, Y. H.; Xiang, Y. J.; Zhang, Y. P.; Dai, Z. G.; Duo, Y. H.; Wu, L. M.; Qi, K. et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat. Commun. 2019, 10, 28.

    Article  CAS  Google Scholar 

  5. Zhurauski, P.; Arya, S. K.; Jolly, P.; Tiede, C.; Tomlinson, D. C.; Ko Ferrigno, P.; Estrela, P. Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection. Biosens. Bioelectron. 2018, 108, 1–8.

    Article  CAS  Google Scholar 

  6. Wang, S.; Zhang, L. Q.; Wan, S.; Cansiz, S.; Cui, C.; Liu, Y.; Cai, R.; Hong, C. Y.; Teng, I. T.; Shi, M. L. et al. Aptasensor with expanded nucleotide using DNA nanotetrahedra for electrochemical detection of cancerous exosomes. ACS Nano 2017, 11, 3943–3949.

    Article  CAS  Google Scholar 

  7. Liang, K.; Liu, F.; Fan, J.; Sun, D. L.; Liu, C.; Lyon, C. J.; Bernard, D. W.; Li, Y.; Yokoi, K.; Katz, M. H. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 2017, 1, 0021.

    Article  CAS  Google Scholar 

  8. Li, X.; Song, J.; Chen, B. L.; Wang, B.; Li, R.; Jiang, H. M.; Liu, J. F.; Li, C. Z. A label-free colorimetric assay for detection of c-Myc mRNA based on peptide nucleic acid and silver nanoparticles. Sci. Bull. 2016, 61, 276–281.

    Article  Google Scholar 

  9. Ma, X. Y.; Song, S.; Kim, S.; Kwon, M. S.; Lee, H.; Park, W.; Sim, S. J. Single gold-bridged nanoprobes for identification of single point DNA mutations. Nat. Commun. 2019, 10, 836.

    Article  CAS  Google Scholar 

  10. Ma, H.; Sun, X. Y.; Chen, L.; Han, X. X.; Zhao, B.; Lu, H.; He, C. Y. Antibody-free discrimination of protein biomarkers in human serum based on surface-enhanced Raman spectroscopy. Anal. Chem. 2018, 90, 12342–12346.

    Article  CAS  Google Scholar 

  11. Zhang, Z.; Yang, M. S.; Yan, X.; Guo, X. Y.; Li, J.; Yang, Y.; Wei, D. Q.; Liu, L. H.; Xie, J. H.; Liu, Y. F. et al. The antibody-free recognition of cancer cells using plasmonic biosensor platforms with the anisotropic resonant metasurfaces. ACS Appl. Mater. Interfaces 2020, 12, 11388–11396.

    Article  CAS  Google Scholar 

  12. Ibau, C.; Arshad, M. K. M.; Gopinath, S. C. B.; Nuzaihan, M. N. M.; Fathil, M. F. M.; Estrela, P. Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum. Biosens. Bioelectron. 2019, 136, 118–127.

    Article  CAS  Google Scholar 

  13. Dantham, V. R.; Holler, S.; Barbre, C.; Keng, D.; Kolchenko, V.; Arnold, S. Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. Nano Lett. 2013, 13, 3347–3351.

    Article  CAS  Google Scholar 

  14. Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745.

    Article  CAS  Google Scholar 

  15. Lindon, J.; Tranter, G. E.; Koppenaal, D. Encyclopedia of Spectroscopy and Spectrometry; 3rd ed. Academic Press: Oxford, 2016.

    Google Scholar 

  16. Huefner, A.; Kuan, W. L.; Müller, K. H.; Skepper, J. N.; Barker, R. A.; Mahajan, S. Characterization and visualization of vesicles in the endo-lysosomal pathway with surface-enhanced Raman spectroscopy and chemometrics. ACS Nano 2016, 10, 307–316.

    Article  CAS  Google Scholar 

  17. Qiao, X. Z.; Su, B. S.; Liu, C.; Song, Q.; Luo, D.; Mo, G.; Wang, T. Selective surface enhanced Raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure. Adv. Mater. 2018, 30, 1702275.

    Article  CAS  Google Scholar 

  18. McCreery, R. L. Raman Spectroscopy for Chemical Analysis; John Wiley & Sons: New York, 2000.

    Book  Google Scholar 

  19. Zhou, W.; Tian, Y. F.; Yin, B. C.; Ye, B. C. Simultaneous surface-enhanced Raman spectroscopy detection of multiplexed MicroRNA biomarkers. Anal. Chem. 2017, 89, 6120–6128.

    Article  CAS  Google Scholar 

  20. Kim, S.; Kim, T. G.; Lee, S. H.; Kim, W.; Bang, A.; Moon, S. W.; Song, J.; Shin, J. H.; Yu, J. S.; Choi, S. Label-free surface-enhanced Raman spectroscopy biosensor for on-site breast cancer detection using human tears. ACS Appl. Mater. Interfaces 2020, 12, 7897–7904.

    Article  CAS  Google Scholar 

  21. Kim, W.; Lee, J. C.; Shin, J. H.; Jin, K. H.; Park, H. K.; Choi, S. Instrument-free synthesizable fabrication of label-free optical biosensing paper strips for the early detection of infectious keratoconjunctivitides. Anal. Chem. 2016, 88, 5531–5537.

    Article  CAS  Google Scholar 

  22. Kim, W.; Lee, S. H.; Kim, S. H.; Lee, J. C.; Moon, S. W.; Yu, J. S.; Choi, S. Highly reproducible Au-decorated ZnO nanorod array on a graphite sensor for classification of human aqueous humors. ACS Appl. Mater. Interfaces 2017, 9, 5891–5899.

    Article  CAS  Google Scholar 

  23. Choi, S.; Moon, S. W.; Lee, S. H.; Kim, W.; Kim, S.; Kim, S. K.; Shin, J. H.; Park, Y. G.; Jin, K. H.; Kim, T. G. A recyclable CNC-milled microfluidic platform for colorimetric assays and label-free aged-related macular degeneration detection. Sens. Actuators B:Chem. 2019, 290, 484–492.

    Article  CAS  Google Scholar 

  24. Cheng, N. T.; Fu, J.; Chen, D. J.; Chen, S. Z.; Wang, H. Y. An antibody-free liver cancer screening approach based on nanoplasmonics biosensing chips via spectrum-based deep learning. NanoImpact 2021, 21, 100296.

    Article  CAS  Google Scholar 

  25. Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462.

    Article  CAS  Google Scholar 

  26. Chen, W. Q.; Zheng, R. S.; Baade, P. D.; Zhang, S. W.; Zeng, H. M.; Bray, F.; Jemal, A.; Yu, X. Q.; He, J. Cancer statistics in China, 2015. CA:Cancer J. Clin. 2016, 66, 115–132.

    Google Scholar 

  27. Cheng, N. T.; Chen, D. J.; Lou, B.; Fu, J.; Wang, H. Y. A biosensing method for the direct serological detection of liver diseases by integrating a SERS-based sensor and a CNN classifier. Biosens. Bioelectron. 2021, 186, 113246.

    Article  CAS  Google Scholar 

  28. Yu, Y.; Lin, Y. T.; Xu, C. X.; Lin, K. C.; Ye, Q.; Wang, X. Y.; Xie, S. S.; Chen, R.; Lin, J. Q. Label-free detection of nasopharyngeal and liver cancer using surface-enhanced Raman spectroscopy and partial lease squares combined with support vector machine. Biomed. Opt. Express 2018, 9, 6053–6066.

    Article  CAS  Google Scholar 

  29. Zhang, K.; Liu, X. J.; Man, B. Y.; Yang, C.; Zhang, C.; Liu, M.; Zhang, Y. H.; Liu, L. S.; Chen, C. S. Label-free and stable serum analysis based on Ag-NPs/PSi surface-enhanced Raman scattering for noninvasive lung cancer detection. Biomed. Opt. Express 2018, 9, 4345–4358.

    Article  CAS  Google Scholar 

  30. Bai, S.; Serien, D.; Hu, A. M.; Sugioka, K. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv. Funct. Mater. 2018, 28, 1706262.

    Article  CAS  Google Scholar 

  31. Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C 2007, 111, 13794–13803.

    Article  CAS  Google Scholar 

  32. Lee, J. P.; Choi, S.; Park, S. Extremely superhydrophobic surfaces with micro- and nanostructures fabricated by copper catalytic etching. Langmuir 2011, 27, 809–814.

    Article  CAS  Google Scholar 

  33. Cao, Y.; Zhou, Y. R.; Liu, F. Z.; Zhou, Y. Q.; Zhang, Y.; Liu, Y.; Guo, Y. K. Progress and mechanism of Cu assisted chemical etching of silicon in a low Cu2+ concentration region. ECS J. Solid State Sci. Technol. 2015, 4, P331–P336.

    Article  CAS  Google Scholar 

  34. Toor, F.; Oh, J.; Branz, H. M. Efficient nanostructured ‘black’ silicon solar cell by copper-catalyzed metal-assisted etching. Prog. Photovoltaics 2015, 23, 1375–1380.

    Article  CAS  Google Scholar 

  35. Lu, Y. T.; Barron, A. R. Anti-reflection layers fabricated by a one-step copper-assisted chemical etching with inverted pyramidal structures intermediate between texturing and nanopore-type black silicon. J. Mater. Chem. A 2014, 2, 12043–12052.

    Article  CAS  Google Scholar 

  36. Wang, Y.; Yang, L. X.; Liu, Y. P.; Mei, Z. X.; Chen, W.; Li, J. Q.; Liang, H. L.; Kuznetsov, A.;, Du, X. L. Maskless inverted pyramid texturization of silicon. Sci. Rep. 2015, 5, 10843.

    Article  CAS  Google Scholar 

  37. Li, J. Y.; Hung, C. H.; Chen, C. Y. Hybrid black silicon solar cells textured with the interplay of copper-induced galvanic displacement. Sci. Rep. 2017, 7, 17177.

    Article  CAS  Google Scholar 

  38. Wang, Y.; Liu, Y. P.; Yang, L. X.; Chen, W.; Du, X. L.; Kuznetsov, A. Micro-structured inverted pyramid texturization of Si inspired by self-assembled Cu nanoparticles. Nanoscale 2017, 9, 907–914.

    Article  CAS  Google Scholar 

  39. Zhao, S.; Yuan, G. D.; Wang, Q.; Liu, W. Q.; Wang, R.; Yang, S. H. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation. Nanoscale 2020, 12, 316–325.

    Article  CAS  Google Scholar 

  40. Ye, W. C.; Shen, C. M.; Tian, J. F.; Wang, C. M.; Bao, L. H.; Gao, H. J. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer. Electrochem. Commun. 2008, 10, 625–629.

    Article  CAS  Google Scholar 

  41. Sun, Y. G.; Wang, Y. X. Monitoring of galvanic replacement reaction between silver nanowires and HAuCl4 by in situ transmission X-ray microscopy. Nano Lett. 2011, 11, 4386–4392.

    Article  CAS  Google Scholar 

  42. Többens, D. M.; Stüßer, N.; Knorr, K.; Mayer, H. M.; Lampert, G. E9: The new high-resolution neutron powder diffractometer at the Berlin neutron scattering center. Mater. Sci. Forum 2001, 378–381, 288–293.

    Article  Google Scholar 

  43. Su, Y.; Xu, S. T.; Zhang, J. A.; Chen, X. J.; Jiang, L. P.; Zheng, T. T.; Zhu, J. J. Plasmon near-field coupling of bimetallic nanostars and a hierarchical bimetallic SERS “Hot Field”: Toward ultrasensitive simultaneous detection of multiple cardiorenal syndrome biomarkers. Anal. Chem. 2019, 91, 864–872.

    Article  CAS  Google Scholar 

  44. Lin, D. D.; Wu, Z. L.; Li, S. J.; Zhao, W. Q.; Ma, C. J.; Wang, J.; Jiang, Z. M.; Zhong, Z. Y.; Zheng, Y. B.; Yang, X. J. Large-area aunanoparticle-functionalized si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy. ACS Nano 2017, 11, 1478–1487.

    Article  CAS  Google Scholar 

  45. Kim, W.; Lee, S. H.; Kim, J. H.; Ahn, Y. J.; Kim, Y. H.; Yu, J. S.; Choi, S. Paper-based surface-enhanced Raman spectroscopy for diagnosing prenatal diseases in women. ACS Nano 2018, 12, 7100–7108.

    Article  CAS  Google Scholar 

  46. Cho, W. J.; Kim, Y.; Kim, J. K. Ultrahigh-density array of silver nanoclusters for SERS substrate with high sensitivity and excellent reproducibility. ACS Nano 2012, 6, 249–255.

    Article  CAS  Google Scholar 

  47. Radziuk, D.; Möhwald, H. Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. ACS Nano 2015, 9, 2820–2835.

    Article  CAS  Google Scholar 

  48. Harz, M.; Rösch, P.; Peschke, K. D.; Ronneberger, O.; Burkhardt, H.; Popp, J. Micro-Raman spectroscopic identification of bacterial cells of the genus Staphylococcus and dependence on their cultivation conditions. Analyst 2005, 130, 1543–1550.

    Article  CAS  Google Scholar 

  49. Kim, G. A.; Seock, C. H.; Park, J. W.; An, J.; Lee, K. S.; Yang, J. E.; Lim, Y. S.; Kim, K. M.; Shim, J. H.; Lee, D. et al. Reappraisal of serum alpha-foetoprotein as a surveillance test for hepatocellular carcinoma during entecavir treatment. Liver Int. 2015, 35, 232–239.

    Article  CAS  Google Scholar 

  50. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236.

    Article  Google Scholar 

  51. Jin, H. J.; Shi, Y. P.; Lv, Y. Y.; Yuan, S. X.; Ramirez, C. F. A.; Lieftink, C.; Wang, L. Q.; Wang, S. Y.; Wang, C.; Dias, M. H. et al. EGFR activation limits the response of liver cancer to lenvatinib. Nature 2021, 595, 730–734.

    Article  CAS  Google Scholar 

  52. Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314.

    Article  Google Scholar 

  53. Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Niksic, M.; Bonaventure, A.; Valkov, M.; Johnson, C. J.; Esteve, J. et al. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 2018, 391, 1023–1075.

    Article  Google Scholar 

  54. Kudo, M. Management of hepatocellular carcinoma in Japan as a world-leading model. Liver Cancer 2018, 7, 134–147.

    Article  Google Scholar 

  55. Kudo, M.; Matsui, O.; Izumi, N.; Iijima, H.; Kadoya, M.; Imai, Y.; Okusaka, T.; Miyayama, S.; Tsuchiya, K.; Ueshima, K. et al. JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the liver cancer study group of Japan. Liver Cancer 2014, 3, 458–468.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81988101). The authors would like to thank Qing Shao and Yin Yang for their hard work in preparing the SERS substrate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, N., Lou, B. & Wang, H. An intelligent serological SERS test toward early-stage hepatocellular carcinoma diagnosis through ultrasensitive nanobiosensing. Nano Res. 15, 5331–5339 (2022). https://doi.org/10.1007/s12274-022-4114-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4114-z

Keywords

Navigation