[go: up one dir, main page]

Skip to main content
Log in

AGC1-mediated Metabolic Reprogramming and Autophagy Sustain Survival of Hepatocellular Carcinoma Cells under Glutamine Deprivation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The dependence of hepatocellular carcinoma (HCC) cells on glutamine suggests the feasibility of targeting glutamine metabolism for therapy. However, drugs inhibiting glutamine uptake and breakdown have not shown promising outcomes. Therefore, investigating the mechanism of glutamine metabolism reprogramming in HCC cells is crucial. We used bioinformatics approaches to investigate the metabolic flux of glutamine in HCC cells and validated it using qRT-PCR and western blotting. HCC cells were cultured in glutamine-deprived medium, and changes in glutamate and ATP levels were monitored. Western blotting was employed to assess the expression of AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) and autophagy-related proteins. The impact of Solute carrier family 25 member 12 (AGC1) on HCC cell proliferation was studied using CCK-8 and colony formation assays. Furthermore, the effects of AGC1 knockdown via siRNA on metabolic reprogramming and energy supply during glutamine deprivation in HCC were explored. During glutamine deprivation, HCC cells sustain cytosolic asparagine synthesis and ATP production through AGC1. Low ATP levels activate AMPK and inhibit mTOR activation, inducing autophagy to rescue HCC cell survival. Knockdown of AGC1 inhibits mitochondrial aspartate output and continuously activates autophagy, rendering HCC cells more sensitive to glutamine deprivation. AGC1 serves as a critical node in the reprogramming of glutamine metabolism and energy supply in HCC cells. This study provides theoretical support for overcoming resistance to drugs targeting glutamine metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

α-KG :

α-Ketoglutaric acid

Ala :

Alanine

Asn :

Asparagine

ASNS :

Asparagine Synthetase (Glutamine-Hydrolyzing)

Asp :

Aspartate

ATF4 :

Activating Transcription Factor 4

CAD :

Carbamoyl-Phosphate Synthetase 2, Aspartate Transcarbamylase, And Dihydroorotase

Cys :

Cystine

DSS :

Disease Specific Survival

GCLC :

Glutamate-Cysteine Ligase Catalytic Subunit

GCLM :

Glutamate-Cysteine Ligase Modifier Subunit

GFPT1 :

Glutamine–Fructose-6-Phosphate Transaminase 1

GFPT2 :

Glutamine–Fructose-6-Phosphate Transaminase 2

Gln :

Glutamine

Glu :

Glutamate

GLU :

Glucose

Gly :

Glycine

GLS :

Glutaminase

GLS2 :

Glutaminase 2

GLUL :

Glutamate–Ammonia Ligase

GLUD1 :

Glutamate Dehydrogenase 1

GOT1 :

Glutamic–Oxaloacetic Transaminase 1

GOT2 :

Glutamic–Oxaloacetic Transaminase 2

GPT :

Glutamic–Pyruvic Transaminase

GPT2 :

Glutamic–Pyruvic Transaminase 2

GSH :

Glutathione

GSS :

Glutathione Synthetase

Leu :

Leucine

MDH1 :

Malate Dehydrogenase 1

MDH2 :

Malate Dehydrogenase 2

OAA :

Oxaloacetate

OS :

Overall Survival

PFI :

Progress Free Interval

PPAT :

Phosphoribosyl Pyrophosphate Amidotransferase

PSAT1 :

Phosphoserine Aminotransferase 1

Ser :

Serine

SLC1A5/ASCT2 :

Solute Carrier Family 1 Member 5 (neutral amino acid transporter)

SLC7A5 :

Solute Carrier Family 7 Member 5 (amino acid transporter light chain, L system)

SLC7A11 :

Solute Carrier Family 7 Member 11 (anionic amino acid transporter light chain, xc-system)

SLC25A11/OGC :

Solute Carrier Family 25 Member 11 (oxoglutarate carrier)

SLC25A12/AGC1 :

Solute Carrier Family 25 Member 12 (aspartate/glutamate carrier)

SLC25A13/AGC2 :

Solute Carrier Family 25 Member 13 (aspartate/glutamate carrier)

SLC25A22/GC1 :

Solute Carrier Family 25 Member 22 (glutamate carrier)

SLC25A18/GC2 :

Solute Carrier Family 25 Member 18 (glutamate carrier)

UCP2 :

Uncoupling Protein 2

References

  1. Forner, A., Reig, M., & Bruix, J. (2018). Hepatocellular carcinoma. Lancet, 391(10127), 1301–1314. https://doi.org/10.1016/s0140-6736(18)30010-2.

    Article  PubMed  Google Scholar 

  2. Xing, R., Gao, J., Cui, Q., & Wang, Q. (2021). Strategies to improve the antitumor effect of immunotherapy for hepatocellular carcinoma. Frontiers Immunology, 12, 783236. https://doi.org/10.3389/fimmu.2021.783236.

    Article  CAS  Google Scholar 

  3. Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  4. Hensley, C. T., Wasti, A. T., & DeBerardinis, R. J. (2013). Glutamine and cancer: Cell biology, physiology, and clinical opportunities. Journal of Clinical Investigation, 123(9), 3678–3684. https://doi.org/10.1172/jci69600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chiu, M., Sabino, C., Taurino, G., Bianchi, M. G., Andreoli, R., Giuliani, N., & Bussolati, O. (2017). Gpna inhibits the sodium-independent transport system l for neutral amino acids. Amino Acids, 49(8), 1365–1372. https://doi.org/10.1007/s00726-017-2436-z.

    Article  CAS  PubMed  Google Scholar 

  6. Hoerner, C. R., Chen, V. J., & Fan, A. C. (2019). The ‘achilles heel’ of metabolism in renal cell carcinoma: Glutaminase inhibition as a rational treatment strategy. Kidney Cancer, 3(1), 15–29. https://doi.org/10.3233/kca-180043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alkan, H. F., Walter, K. E., Luengo, A., Madreiter-Sokolowski, C. T., Stryeck, S., Lau, A. N., Al-Zoughbi, W., Lewis, C. A., Thomas, C. J., Hoefler, G., Graier, W. F., Madl, T., Vander Heiden, M. G., & Bogner-Strauss, J. G. (2018). Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metabolism, 28(5), 706–720.e706. https://doi.org/10.1016/j.cmet.2018.07.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palmieri, F. (2013). The mitochondrial transporter family slc25: Identification, properties and physiopathology. Molecular Aspects of Medicine, 34(2-3), 465–484. https://doi.org/10.1016/j.mam.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  9. Ruprecht, J. J., & Kunji, E. R. S. (2020). The slc25 mitochondrial carrier family: Structure and mechanism. Trends in Biochemical Science, 45(3), 244–258. https://doi.org/10.1016/j.tibs.2019.11.001.

    Article  CAS  Google Scholar 

  10. Profilo, E., Peña-Altamira, L. E., Corricelli, M., Castegna, A., Danese, A., Agrimi, G., Petralla, S., Giannuzzi, G., Porcelli, V., Sbano, L., Viscomi, C., Massenzio, F., Palmieri, E. M., Giorgi, C., Fiermonte, G., Virgili, M., Palmieri, L., Zeviani, M., Pinton, P., Monti, B., Palmieri, F., & Lasorsa, F. M. (2017). Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 agc1 inhibits proliferation and n-acetylaspartate synthesis in neuro2a cells. Biochimica et Biophysica Acta: Molecular Basis of Disease, 1863(6), 1422–1435. https://doi.org/10.1016/j.bbadis.2017.02.022.

    Article  CAS  PubMed  Google Scholar 

  11. Rogov, V., Dötsch, V., Johansen, T., & Kirkin, V. (2014). Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Molecular Cell, 53(2), 167–178. https://doi.org/10.1016/j.molcel.2013.12.014.

    Article  CAS  PubMed  Google Scholar 

  12. Mizushima, N. (2007). Autophagy: Process and function. Genes Development, 21(22), 2861–2873. https://doi.org/10.1101/gad.1599207.

    Article  CAS  PubMed  Google Scholar 

  13. Hansen, T. E., & Johansen, T. (2011). Following autophagy step by step. BMC Biology, 9, 39. https://doi.org/10.1186/1741-7007-9-39.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mazure, N. M., & Pouysségur, J. (2010). Hypoxia-induced autophagy: Cell death or cell survival? Current Opinion Cell Biology, 22(2), 177–180. https://doi.org/10.1016/j.ceb.2009.11.015.

    Article  CAS  Google Scholar 

  15. Ureshino, R. P., Rocha, K. K., Lopes, G. S., Bincoletto, C., & Smaili, S. S. (2014). Calcium signaling alterations, oxidative stress, and autophagy in aging. Antioxidant and Redox Signaling, 21(1), 123–137. https://doi.org/10.1089/ars.2013.5777.

    Article  CAS  Google Scholar 

  16. Alers, S., Löffler, A. S., Wesselborg, S., & Stork, B. (2012). Role of ampk-mtor-ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Molecular Cell Biology, 32(1), 2–11. https://doi.org/10.1128/mcb.06159-11.

    Article  CAS  Google Scholar 

  17. Hua, H., Kong, Q., Zhang, H., Wang, J., Luo, T., & Jiang, Y. (2019). Targeting mtor for cancer therapy. Journal Hematology Oncology, 12(1), 71 https://doi.org/10.1186/s13045-019-0754-1.

    Article  Google Scholar 

  18. Chen, R., Zou, Y., Mao, D., Sun, D., Gao, G., Shi, J., Liu, X., Zhu, C., Yang, M., Ye, W., Hao, Q., Li, R., & Yu, L. (2014). The general amino acid control pathway regulates mtor and autophagy during serum/glutamine starvation. Journal Cell Biology, 206(2), 173–182. https://doi.org/10.1083/jcb.201403009.

    Article  CAS  Google Scholar 

  19. Zhang, J., Pavlova, N. N., & Thompson, C. B. (2017). Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. Embo Journal, 36(10), 1302–1315. https://doi.org/10.15252/embj.201696151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O., & Stephanopoulos, G. (2011). Reductive glutamine metabolism by idh1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380–384. https://doi.org/10.1038/nature10602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raushel, F. M., Thoden, J. B., & Holden, H. M. (1999). The amidotransferase family of enzymes: Molecular machines for the production and delivery of ammonia. Biochemistry, 38(25), 7891–7899. https://doi.org/10.1021/bi990871p.

    Article  CAS  PubMed  Google Scholar 

  22. Vučetić, M., Cormerais, Y., Parks, S. K., & Pouysségur, J. (2017). The central role of amino acids in cancer redox homeostasis: Vulnerability points of the cancer redox code. Frontiers Oncology, 7, 319 https://doi.org/10.3389/fonc.2017.00319.

    Article  Google Scholar 

  23. Patel, D., Menon, D., Bernfeld, E., Mroz, V., Kalan, S., Loayza, D., & Foster, D. A. (2016). Aspartate rescues s-phase arrest caused by suppression of glutamine utilization in kras-driven cancer cells. Journal of Biology and Chemistry, 291(17), 9322–9329. https://doi.org/10.1074/jbc.M115.710145.

    Article  CAS  Google Scholar 

  24. Mullen, A. R., Wheaton, W. W., Jin, E. S., Chen, P. H., Sullivan, L. B., Cheng, T., Yang, Y., Linehan, W. M., Chandel, N. S., & DeBerardinis, R. J. (2011). Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature, 481(7381), 385–388. https://doi.org/10.1038/nature10642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fendt, S. M., Bell, E. L., Keibler, M. A., Olenchock, B. A., Mayers, J. R., Wasylenko, T. M., Vokes, N. I., Guarente, L., Vander Heiden, M. G., & Stephanopoulos, G. (2013). Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nature Communication, 4, 2236. https://doi.org/10.1038/ncomms3236.

    Article  CAS  Google Scholar 

  26. Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C., & Kimmelman, A. C. (2013). Glutamine supports pancreatic cancer growth through a kras-regulated metabolic pathway. Nature, 496(7443), 101–105. https://doi.org/10.1038/nature12040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raho, S., Capobianco, L., Malivindi, R., Vozza, A., Piazzolla, C., De Leonardis, F., Gorgoglione, R., Scarcia, P., Pezzuto, F., Agrimi, G., Barile, S. N., Pisano, I., Reshkin, S. J., Greco, M. R., Cardone, R. A., Rago, V., Li, Y., Marobbio, C. M. T., Sommergruber, W., Riley, C. L., Lasorsa, F. M., Mills, E., Vegliante, M. C., De Benedetto, G. E., Fratantonio, D., Palmieri, L., Dolce, V., & Fiermonte, G. (2020). Kras-regulated glutamine metabolism requires ucp2-mediated aspartate transport to support pancreatic cancer growth. Nature Metabolism, 2(12), 1373–1381. https://doi.org/10.1038/s42255-020-00315-1.

    Article  CAS  PubMed  Google Scholar 

  28. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S., & Thompson, C. B. (2007). Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy Science USA, 104(49), 19345–19350. https://doi.org/10.1073/pnas.0709747104.

    Article  Google Scholar 

  29. Sullivan, L. B., Gui, D. Y., Hosios, A. M., Bush, L. N., Freinkman, E., & Vander Heiden, M. G. (2015). Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 162(3), 552–563. https://doi.org/10.1016/j.cell.2015.07.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gui, D. Y., Sullivan, L. B., Luengo, A., Hosios, A. M., Bush, L. N., Gitego, N., Davidson, S. M., Freinkman, E., Thomas, C. J., & Vander Heiden, M. G. (2016). Environment dictates dependence on mitochondrial complex i for nad+ and aspartate production and determines cancer cell sensitivity to metformin. Cell Metabolism, 24(5), 716–727. https://doi.org/10.1016/j.cmet.2016.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Birsoy, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Remaileh, M., & Sabatini, D. M. (2015). An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 162(3), 540–551. https://doi.org/10.1016/j.cell.2015.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garcia-Bermudez, J., Baudrier, L., La, K., Zhu, X. G., Fidelin, J., Sviderskiy, V. O., Papagiannakopoulos, T., Molina, H., Snuderl, M., Lewis, C. A., Possemato, R. L., & Birsoy, K. (2018). Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nature Cell Biology, 20(7), 775–781. https://doi.org/10.1038/s41556-018-0118-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. González, A., Hall, M. N., Lin, S. C., & Hardie, D. G. (2020). Ampk and tor: The yin and yang of cellular nutrient sensing and growth control. Cell Metabolism, 31(3), 472–492. https://doi.org/10.1016/j.cmet.2020.01.015.

    Article  CAS  PubMed  Google Scholar 

  34. Alkan, H. F., & Bogner-Strauss, J. G. (2019). Maintaining cytosolic aspartate levels is a major function of the tca cycle in proliferating cells. Molecular Cell Oncology, 6(5), e1536843 https://doi.org/10.1080/23723556.2018.1536843.

    Article  Google Scholar 

  35. Meléndez-Rodríguez, F., Urrutia, A. A., Lorendeau, D., Rinaldi, G., Roche, O., Böğürcü-Seidel, N., Ortega Muelas, M., Mesa-Ciller, C., Turiel, G., Bouthelier, A., Hernansanz-Agustín, P., Elorza, A., Escasany, E., Li, Q. O. Y., Torres-Capelli, M., Tello, D., Fuertes, E., Fraga, E., Martínez-Ruiz, A., Pérez, B., Giménez-Bachs, J. M., Salinas-Sánchez, A. S., Acker, T., Sánchez Prieto, R., Fendt, S. M., De Bock, K., & Aragonés, J. (2019). Hif1α suppresses tumor cell proliferation through inhibition of aspartate biosynthesis. Cell Reports, 26(9), 2257–2265.e2254. https://doi.org/10.1016/j.celrep.2019.01.106.

    Article  CAS  PubMed  Google Scholar 

  36. Yoo, H. C., Park, S. J., Nam, M., Kang, J., Kim, K., Yeo, J. H., Kim, J. K., Heo, Y., Lee, H. S., Lee, M. Y., Lee, C. W., Kang, J. S., Kim, Y. H., Lee, J., Choi, J., Hwang, G. S., Bang, S., & Han, J. M. (2020). A variant of slc1a5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metabolism, 31(2), 267–283.e212. https://doi.org/10.1016/j.cmet.2019.11.020.

    Article  CAS  PubMed  Google Scholar 

  37. Li, X., Chung, A. C. K., Li, S., Wu, L., Xu, J., Yu, J., Wong, C., & Cai, Z. (2017). Lc-ms-based metabolomics revealed slc25a22 as an essential regulator of aspartate-derived amino acids and polyamines in kras-mutant colorectal cancer. Oncotarget, 8(60), 101333–101344. https://doi.org/10.18632/oncotarget.21093.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alkan, H. F., Vesely, P. W., Hackl, H., Foßelteder, J., Schmidt, D. R., Vander Heiden, M. G., Pichler, M., Hoefler, G., & Bogner-Strauss, J. G. (2020). Deficiency of malate-aspartate shuttle component slc25a12 induces pulmonary metastasis. Cancer Metabolism, 8(1), 26 https://doi.org/10.1186/s40170-020-00232-7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao, Y., Wang, Y., Miao, Z., Liu, Y., & Yang, Q. (2023). C-myc protects hepatocellular carcinoma cell from ferroptosis induced by glutamine deprivation via upregulating got1 and nrf2. Molecular Biology Reports, 50(8), 6627–6641. https://doi.org/10.1007/s11033-023-08495-1.

    Article  CAS  PubMed  Google Scholar 

  40. Kremer, D. M., Nelson, B. S., Lin, L., Yarosz, E. L., Halbrook, C. J., Kerk, S. A., Sajjakulnukit, P., Myers, A., Thurston, G., Hou, S. W., Carpenter, E. S., Andren, A. C., Nwosu, Z. C., Cusmano, N., Wisner, S., Mbah, N. E., Shan, M., Das, N. K., Magnuson, B., Little, A. C., Savani, M. R., Ramos, J., Gao, T., Sastra, S. A., Palermo, C. F., Badgley, M. A., Zhang, L., Asara, J. M., McBrayer, S. K., di Magliano, M. P., Crawford, H. C., Shah, Y. M., Olive, K. P., & Lyssiotis, C. A. (2021). Got1 inhibition promotes pancreatic cancer cell death by ferroptosis. Nature Communication, 12(1), 4860. https://doi.org/10.1038/s41467-021-24859-2.

    Article  CAS  Google Scholar 

  41. Toda, K., Kawada, K., Iwamoto, M., Inamoto, S., Sasazuki, T., Shirasawa, S., Hasegawa, S., & Sakai, Y. (2016). Metabolic alterations caused by kras mutations in colorectal cancer contribute to cell adaptation to glutamine depletion by upregulation of asparagine synthetase. Neoplasia, 18(11), 654–665. https://doi.org/10.1016/j.neo.2016.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gwinn, D. M., Lee, A. G., Briones-Martin-Del-Campo, M., Conn, C. S., Simpson, D. R., Scott, A. I., Le, A., Cowan, T. M., Ruggero, D., & Sweet-Cordero, E. A. (2018). Oncogenic kras regulates amino acid homeostasis and asparagine biosynthesis via atf4 and alters sensitivity to l-asparaginase. Cancer Cell, 33(1), 91–107.e106. https://doi.org/10.1016/j.ccell.2017.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 31972890 to Q.Y.) and the Department of Science and Technology of Jilin Province (No. 20230101139JC to Q.Y.).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the study. Y.L. wrote the manuscript. Y.L. and Z.M. performed the experiments and prepared the figures. Q.Y. supervised the study and revised the manuscript.

Corresponding author

Correspondence to Qing Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Correspondence to Qing Yang.

Consent for publication

All authors have agreed to publish this manuscript.

Ethical approval

It is not applicable. This article does not involve any research on human participants and animals conducted by the authors. The expression data of human liver cancer tissues come from the TCGA (https://portal.gdc.cancer.gov/) and the ICGC (https://dcc.icgc.org/), which are publicly available and free of charge.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Miao, Z. & Yang, Q. AGC1-mediated Metabolic Reprogramming and Autophagy Sustain Survival of Hepatocellular Carcinoma Cells under Glutamine Deprivation. Cell Biochem Biophys (2024). https://doi.org/10.1007/s12013-024-01311-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12013-024-01311-y

Keywords

Navigation