[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Environmental impact assessment of the current, emerging, and alternative waste management systems using life cycle assessment tools: a case study of Johannesburg, South Africa

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Proper information regarding the performance of waste management systems from an environmental perspective is significant to sustainable waste management decisions and planning toward the selection of the least impactful treatment options. However, little is known about the environmental impacts of the different waste management options in South Africa. This study is therefore aimed at using the life cycle assessment tool to assess the environmental impact of the current, emerging, and alternative waste management systems in South Africa, using the city of Johannesburg as a case study. This assessment involves a comparative analysis of the unit processes of waste management and the different waste management scenarios comprising two or more unit processes from an environmental view. The lifecycle boundary consists of unit processes: waste collection and transportation (WC&T), material recycling facilities (MRF), composting, incineration, and landfilling. Four scenarios developed for the assessment are S1 (WC&T, MRF, and landfilling without energy recovery), S2 (WC&T, MRF, composting, and landfilling with energy recovery), S3 (WC&T and incineration), and S4 (WC&T, MRF, composting, and incineration). Based on the result of this study, MRF is the most environmentally beneficial unit operation while landfill without energy recovery is the most impactful unit operation. The result further revealed that no scenario had the best performance across all the impact categories. However, S3 can be considered as the most environmentally friendly option owing to its lowest impact in most of the impact categories. S3 has the lowest global warming potential (GWP) of 33.19 × 106 kgCO2eq, ozone depletion potential (ODP) of 0.563 kgCFC-11e, and photochemical ozone depletion potential (PODP) of 679.46 kgC2H2eq. Also, S4 can be regarded as the most impactful option owing to its highest contributions to PODP of 1044 kgC2H2eq, acidification potential (AP) of 892073.8 kgSO2eq, and eutrophication potential (EP) of 51292.98 MaxPO4−3eq. The result of this study will be found helpful in creating a complete impression of the environmental performance of waste management systems in Johannesburg, South Africa which will aid sustainable planning and decisions by the concerned sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Not applicable.

References

Download references

Acknowledgements

The authors appreciate the management of the Department of Mechanical Engineering Science, University of Johannesburg, South Africa for providing workspace and research facilities for this research and the University of Calgary, Canada for providing license to SIMAPRO software.

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

OA: conceptualization, methodology, visualization, writing original draft, writing review and editing. SA: supervision, review, and editing. T-CJ: supervision, review, and editing. ID: methodology, supervision, review, and editing.

Corresponding author

Correspondence to Oluwatobi Adeleke.

Ethics declarations

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Philippe Loubet

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleke, O., Akinlabi, S.A., Jen, TC. et al. Environmental impact assessment of the current, emerging, and alternative waste management systems using life cycle assessment tools: a case study of Johannesburg, South Africa. Environ Sci Pollut Res 29, 7366–7381 (2022). https://doi.org/10.1007/s11356-021-16198-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-16198-y

Keywords