[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Preparation and Oxygen Evolution Reaction on Nanoporous Semi-transparent La0.8Sr0.2CoO3 Coatings: Stability and Mechanism in Neutral Medium

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

For the prospective use in oxygen evolution reaction, the semi-transparent thin film of La0.8Sr0.2CoO3 (LSCO), was deposited on fluorine-doped tin oxide coated glass substrate as an electrocatalyst, by using sol–gel method of synthesis followed by spin coating. Detailed characterization explains the crystallinity, homogeneity and nano porosity of the film. Films are conducting with low sheet resistance and high carrier concentration. Electrochemical measurements in 0.1 M phosphate buffer solution (pH 7.4) confirms the evolution of oxygen which starts at 1.51 V vs RHE with an overpotential value of 280 mV and Tafel slope value of 104 mv/dec in neutral medium (0.1 M phosphate buffer), which remain stable for a long time. LSCO is a well-known material for OER in basic medium, as demonstrated in many literature studies. However, this study demonstrates its electrocatalytic activity in neutral medium and how the surface of material changes after some time. Catalyst is subjected to the stability test for ~ 22 hours, and it is observed that stability is good. Post electrochemical characterization using XRD and XPS indicates that the bulk lattice remains intact, however breakdown of the surface lattice structure produces separate oxides. Briefly, reduced cobalt oxide and oxidised strontium species form on the surface after electrocatalysis. The reduction is well correlated with the depletion of lattice oxygen from the La0.8Sr0.2CoO3 compound, depicting its role in the OER process. The assumption that cobalt ions play a decisive role in the electrochemical reaction is also established from XPS studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Malkhandi S, Yang B, Manohar AK et al (2012) Electrocatalytic properties of nanocrystalline calcium-doped lanthanum cobalt oxide for bifunctional oxygen electrodes. J Phys Chem Lett 3:967–972. https://doi.org/10.1021/jz300181a

    Article  PubMed  CAS  Google Scholar 

  2. Guo Y, Zhang C, Zhang J et al (2021) Metal-organic framework-derived bimetallic NiFe selenide electrocatalysts with multiple phases for efficient oxygen evolution reaction. ACS Sustain Chem Eng 9:2047–2056. https://doi.org/10.1021/acssuschemeng.0c06969

    Article  CAS  Google Scholar 

  3. Kaneti YV, Guo Y, Septiani NLW et al (2021) Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Chem Eng J 405:126580. https://doi.org/10.1016/j.cej.2020.126580

    Article  CAS  Google Scholar 

  4. Ao K, Wei Q, Daoud WA (2020) MOF-derived sulfide-based electrocatalyst and scaffold for boosted hydrogen production. ACS Appl Mater Interfaces 12:33595–33602. https://doi.org/10.1021/acsami.0c04302

    Article  PubMed  CAS  Google Scholar 

  5. Hu S, Wang S, Feng C et al (2020) Novel MOF-derived nickel nitride as high-performance bifunctional electrocatalysts for hydrogen evolution and urea oxidation. ACS Sustain Chem Eng 8:7414–7422. https://doi.org/10.1021/acssuschemeng.0c01450

    Article  CAS  Google Scholar 

  6. Septiani NLW, Kaneti YV, Fathoni KB et al (2020) Self-assembly of two-dimensional bimetallic nickel–cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem Mater 32:7005–7018. https://doi.org/10.1021/acs.chemmater.0c02385

    Article  CAS  Google Scholar 

  7. Bhanja P, Kim Y, Paul B et al (2020) Facile synthesis of nanoporous transition metal-based phosphates for oxygen evolution reaction. ChemCatChem 12:2091–2096. https://doi.org/10.1002/cctc.201901803

    Article  CAS  Google Scholar 

  8. Bisht A, Sihag A, Satyaprasad A et al (2018) Pt metal supported and Pt4+ doped La1−xSrxCoO3: non-performance of Pt4+ and reactivity differences with Pt metal. Catal Lett 148:1965–1977. https://doi.org/10.1007/s10562-018-2408-2

    Article  CAS  Google Scholar 

  9. Fan H, Keane M, Singh P, Han M (2014) Electrochemical performance and stability of lanthanum strontium cobalt ferrite oxygen electrode with gadolinia doped ceria barrier layer for reversible solid oxide fuel cell. J Power Sources 268:634–639. https://doi.org/10.1016/j.jpowsour.2014.03.080

    Article  CAS  Google Scholar 

  10. Malkhandi S, Trinh P, Manohar AK et al (2013) Electrocatalytic activity of transition metal oxide-carbon composites for oxygen reduction in alkaline batteries and fuel cells. J Electrochem Soc 160:F943. https://doi.org/10.1149/2.109308jes

    Article  CAS  Google Scholar 

  11. Bieberle-Hütter A, Tuller H (2006) Fabrication and structural characterization of interdigitated thin film La1−xSrxCoO3(LSCO) electrodes. J Electroceram 16:151–157. https://doi.org/10.1007/S10832-006-5945-9

    Article  Google Scholar 

  12. Worayingyong A, Kangvansura P, Ausadasuk S, Praserthdam P (2008) The effect of preparation: Pechini and Schiff base methods, on adsorbed oxygen of LaCoO3 perovskite oxidation catalysts. Colloids Surf A 315:217–225. https://doi.org/10.1016/j.colsurfa.2007.08.002

    Article  CAS  Google Scholar 

  13. Pradier CM, Hinnen C, Jansson K et al (1998) Structural and surface characterization of perovskite-type oxides; influence of A and B substitutions upon oxygen binding energy. J Mater Sci 33:3187–3191. https://doi.org/10.1023/A:1004312326617

    Article  CAS  Google Scholar 

  14. Sase M, Ueno D, Yashiro K et al (2005) Interfacial reaction and electrochemical properties of dense (La, Sr)CoO3−δ cathode on YSZ (1 0 0). J Phys Chem Solids 66:343–348. https://doi.org/10.1016/j.jpcs.2004.06.057

    Article  CAS  Google Scholar 

  15. Yang J, Muroyama H, Matsui T, Eguchi K (2010) A comparative study on polarization behavior of (La, Sr)MnO3 and (La, Sr)CoO3 cathodes for solid oxide fuel cells. Int J Hydrogen Energy 35(19):10505–10512. https://doi.org/10.1016/J.IJHYDENE.2010.07.174

    Article  CAS  Google Scholar 

  16. Chen Yu, Adler SB (2005) Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1-xSrxCoO3-δ). Chem Mater 17:4537–4546. https://doi.org/10.1021/cm050905h

    Article  CAS  Google Scholar 

  17. Cheng X, Fabbri E, Nachtegaal M et al (2015) Oxygen evolution reaction on La1–xSrxCoO3 perovskites: a combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem Mater 27:7662–7672. https://doi.org/10.1021/acs.chemmater.5b03138

    Article  CAS  Google Scholar 

  18. Fabbri E, Habereder A, Waltar K et al (2014) Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal Sci Technol 4:3800–3821. https://doi.org/10.1039/C4CY00669K

    Article  CAS  Google Scholar 

  19. Zhou W, Zhao M, Liang F et al (2015) High activity and durability of novel perovskite electrocatalysts for water oxidation. Mater Horiz 2:495–501. https://doi.org/10.1039/C5MH00096C

    Article  CAS  Google Scholar 

  20. Park J-S, Bae J, Kim Y-B (2016) Performance stability of strontium-doped lanthanum cobaltite ceramic cathode synthesized by a wet chemical method. Ceram Int 42:12853–12859. https://doi.org/10.1016/j.ceramint.2016.05.050

    Article  CAS  Google Scholar 

  21. Ringuedé A, Guindet J (1997) Ideal behavior of a thin layer of La0.7Sr0.3CoO3−δ. Ionics 3:256–260. https://doi.org/10.1007/bf02375625

    Article  Google Scholar 

  22. Opitz AK, Nenning A, Rameshan C, Rameshan R, Blume R, Hävecker M, Knop-Gericke A, Rupprechter G, Fleig J, Klötzer B (2015) Enhancing electrochemical water-splitting kinetics by polarization-driven formation of near-surface iron(0): an in situ XPS study on perovskite-type electrodes. Angew Chem Int Ed Engl 54(9):2628–2632. https://doi.org/10.1002/anie.201409527

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno N, Fujii H, Igarashi H, Misono M (1992) Formation of lanthanum cobalt oxide (LaCoO3) highly dispersed on zirconium dioxide. J Am Chem Soc 114(18):7151–7158. https://doi.org/10.1021/JA00044A030

    Article  CAS  Google Scholar 

  24. Yu B, Zhang W, Xu J et al (2012) Preparation and electrochemical behavior of dense YSZ film for SOEC. Int J Hydrogen Energy 37:12074–12080. https://doi.org/10.1016/j.ijhydene.2012.05.063

    Article  CAS  Google Scholar 

  25. Cid CCP, Spada ER, Sartorelli ML (2013) Effect of the cathodic polarization on structural and morphological proprieties of FTO and ITO thin films. Appl Surf Sci 273:603–606. https://doi.org/10.1016/j.apsusc.2013.02.085

    Article  CAS  Google Scholar 

  26. Liu F-K, Chang Y-C, Ko F-H et al (2003) Rapid fabrication of high quality self-assembled nanometer gold particles by spin coating method. Microelectron Eng 67–68:702–709. https://doi.org/10.1016/S0167-9317(03)00175-8

    Article  CAS  Google Scholar 

  27. Tabata K, Matsumoto I, Kohiki S (1987) Surface characterization and catalytic properties of La1−x-Srx CoO3. J Mater Sci 22:1882–1886. https://doi.org/10.1007/BF01132422

    Article  CAS  Google Scholar 

  28. Singh RN, Lal B (2002) High surface area lanthanum cobaltate and its A and B sites substituted derivatives for electrocatalysis of O2 evolution in alkaline solution. Int J Hydrogen Energy 27:45–55. https://doi.org/10.1016/S0360-3199(01)00078-7

    Article  CAS  Google Scholar 

  29. Hwang HJ, Moon J, Awano M, Maeda K (2000) Sol–gel route to porous lanthanum cobaltite (LaCoO3) thin films. J Am Ceram Soc 83:2852–2854. https://doi.org/10.1111/j.1151-2916.2000.tb01643.x

    Article  CAS  Google Scholar 

  30. Lu Y, Ma A, Yu Y et al (2019) Engineering oxygen vacancies into LaCoO3 perovskite for efficient electrocatalytic oxygen evolution. ACS Sustain Chem Eng 7:2906–2910. https://doi.org/10.1021/acssuschemeng.8b05717

    Article  CAS  Google Scholar 

  31. Li X-G, Dong Y-H, Xian H et al (2011) De-NOx in alternative lean/rich atmospheres on La1−xSrxCoO3 perovskites. Energy Environ Sci 4:3351–3354. https://doi.org/10.1039/C1EE01726H

    Article  CAS  Google Scholar 

  32. Baumann FS, Fleig J, Cristiani G et al (2007) Quantitative comparison of mixed conducting SOFC cathode materials by means of thin film model electrodes. J Electrochem Soc 154:B931. https://doi.org/10.1149/1.2752974

    Article  CAS  Google Scholar 

  33. Park J-S, Kim Y-B (2016) Synthesis and characterization of nanoporous strontium-doped lanthanum cobaltite thin film using metal organic chemical solution deposition. Thin Solid Films 599:174–178. https://doi.org/10.1016/j.tsf.2015.12.042

    Article  CAS  Google Scholar 

  34. Park J-S, Bae J, Hong S, Kim Y-B (2017) Superior La1−xSrxCoO3−δ ceramic electrode fabrication by MOCSD for low-temperature SOFC application. Surf Coat Technol 311:157–163. https://doi.org/10.1016/j.surfcoat.2016.12.091

    Article  CAS  Google Scholar 

  35. Liu J-M, Ong CK (1998) Effect of oxygen stoichiometry on the electrical property of thin film La0.5Sr0.5CoO3 prepared by pulsed laser deposition. J Appl Phys 84:5560–5565. https://doi.org/10.1063/1.368600

    Article  CAS  Google Scholar 

  36. Lombardo EA, Tanaka K, Toyoshima I (1983) XPS Characterization of reduced LaCoO3 perovskite. J Catal 80:340–349. https://doi.org/10.1016/0021-9517(83)90259-2

    Article  CAS  Google Scholar 

  37. Kojima I, Adachi H, Yasumori I (1983) Electronic structures of the LaBO3 (B = Co, Fe, Al) perovskite oxides related to their catalysis. Surf Sci 130:50–62. https://doi.org/10.1016/0039-6028(83)90259-5

    Article  CAS  Google Scholar 

  38. Dhakar S, Mukhopadhyay S, Ottakam Thotiyl M, Sharma S (2024) Methanol assisted water electrooxidation on noble metal free perovskite: RRDE insight into the catalyst’s behaviour. J Colloid Interface Sci 654:688–697. https://doi.org/10.1016/j.jcis.2023.10.072

    Article  PubMed  CAS  Google Scholar 

  39. Armelao L, Bandoli G, Barreca D, Bettinelli M, Bottaro G, Caneschi A (2002) Synthesis and characterization of nanophasic LaCoO3 powders. Surf Interface Anal 34(1):112–115. https://doi.org/10.1002/sia.1264

    Article  CAS  Google Scholar 

  40. Touahra F, Chebout R, Lerari D et al (2019) Role of the nanoparticles of Cu–Co alloy derived from perovskite in dry reforming of methane. Energy 171:465–474. https://doi.org/10.1016/j.energy.2019.01.085

    Article  CAS  Google Scholar 

  41. Tan R, Zhu Y (2005) Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas. Appl Catal B 58:61–68. https://doi.org/10.1016/j.apcatb.2004.12.003

    Article  CAS  Google Scholar 

  42. Chen K, Hyodo J, Ai N et al (2016) Boron deposition and poisoning of La0.8Sr0.2MnO3 oxygen electrodes of solid oxide electrolysis cells under accelerated operation conditions. Int J Hydrogen Energy 41:1419–1431. https://doi.org/10.1016/j.ijhydene.2015.11.013

    Article  CAS  Google Scholar 

  43. Yang Q, Wang D, Wang C et al (2018) Facile surface improvement method for LaCoO3 for toluene oxidation. Catal Sci Technol 8:3166–3173. https://doi.org/10.1039/C8CY00765A

    Article  CAS  Google Scholar 

  44. Zhang B-T, Liu J, Yue S et al (2017) Hot electron injection: an efficacious approach to charge LaCoO3 for improving the water splitting efficiency. Appl Catal B 219:432–438. https://doi.org/10.1016/j.apcatb.2017.07.033

    Article  CAS  Google Scholar 

  45. Crumlin EJ, Mutoro E, Liu Z et al (2012) Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci 5:6081–6088. https://doi.org/10.1039/C2EE03397F

    Article  CAS  Google Scholar 

  46. Pawlak DA, Ito M, Oku M et al (2002) Interpretation of XPS O (1s) in mixed oxides proved on mixed perovskite crystals. J Phys Chem B 106:504–507. https://doi.org/10.1021/jp012040a

    Article  CAS  Google Scholar 

  47. Sethulakshmi N, Nellaiappan S, Pentyala P et al (2021) Nanocoral CuCo2S4 thiospinels: oxygen evolution reaction via redox interaction of metal ions. Electrochim Acta 370:137701. https://doi.org/10.1016/j.electacta.2020.137701

    Article  CAS  Google Scholar 

  48. Kapałka A, Fóti G, Comninellis C (2008) Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem Commun 10:607–610. https://doi.org/10.1016/j.elecom.2008.02.003

    Article  CAS  Google Scholar 

  49. Karthick K, Anantharaj S, Ede SR, Kundu S (2019) Nanosheets of nickel iron hydroxy carbonate hydrate with pronounced OER activity under alkaline and near-neutral conditions. Inorg Chem 58:1895–1904. https://doi.org/10.1021/acs.inorgchem.8b02680

    Article  PubMed  CAS  Google Scholar 

  50. Bisht A, Zhang P, Shivakumara C, Sharma S (2015) Pt-doped and Pt-supported La1–xSrxCoO3: comparative activity of Pt4+ and Pt0 toward the CO poisoning effect in formic acid and methanol electro-oxidation. J Phys Chem C 119:14126–14134. https://doi.org/10.1021/acs.jpcc.5b01241

    Article  CAS  Google Scholar 

  51. Singhal A, Bisht A, Irusta S (2018) Enhanced oxygen evolution activity of Co3−xNixO4 compared to Co3O4 by low Ni doping. J Electroanal Chem 823:482–491. https://doi.org/10.1016/j.jelechem.2018.06.051

    Article  CAS  Google Scholar 

  52. Kumar M, Subramania A, Balakrishnan K (2014) Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors. Electrochim Acta 149:152–158. https://doi.org/10.1016/j.electacta.2014.10.021

    Article  CAS  Google Scholar 

  53. Qiu B, Guo W, Liang Z, Xia W, Gao S, Wang Q, Yu X, Zhao R, Zou R (2017) Fabrication of Co3O4 nanoparticles in thin porous carbon shells from metal–organic frameworks for enhanced electrochemical performance. RSC Adv 7:13340–13346

    Article  CAS  Google Scholar 

  54. Hu Y, Liu W, Jiang K et al (2020) Constructing a CeO2−x@CoFe-layered double hydroxide heterostructure as an improved electrocatalyst for highly efficient water oxidation. Inorg Chem Front 7:4461–4468. https://doi.org/10.1039/D0QI01003K

    Article  CAS  Google Scholar 

  55. Fernandez-Garcia S, Jiang L, Tinoco M et al (2016) Enhanced hydroxyl radical scavenging activity by doping lanthanum in ceria nanocubes. J Phys Chem C 120:1891–1901. https://doi.org/10.1021/acs.jpcc.5b09495

    Article  CAS  Google Scholar 

  56. Celorrio V, Dann E, Calvillo L et al (2016) Oxygen reduction at carbon-supported lanthanides: the role of the B-site. ChemElectroChem 3:283–291. https://doi.org/10.1002/celc.201500440

    Article  CAS  Google Scholar 

  57. Natile MM, Galenda A, Glisenti A (2008) From La2O3 to LaCoO3: XPS analysis. Surf Sci Spectra 15:1–13. https://doi.org/10.1116/11.20061006

    Article  CAS  Google Scholar 

  58. Opitz AK, Rameshan C, Kubicek M et al (2018) The chemical evolution of the La0.6Sr0.4CoO3−δ surface under SOFC operating conditions and its implications for electrochemical oxygen exchange activity. Top Catal 61(20):2129–2214. https://doi.org/10.1007/s11244-018-1068-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Dupin J-C, Gonbeau D, Vinatier P, Levasseur A (2000) Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys Chem Chem Phys 2:1319–1324. https://doi.org/10.1039/A908800H

    Article  CAS  Google Scholar 

  60. Babar PT, Lokhande AC, Pawar BS et al (2018) Electrocatalytic performance evaluation of cobalt hydroxide and cobalt oxide thin films for oxygen evolution reaction. Appl Surf Sci 427:253–259. https://doi.org/10.1016/j.apsusc.2017.07.142

    Article  CAS  Google Scholar 

  61. Petitto SC, Marsh EM, Carson GA, Langell MA (2008) Cobalt oxide surface chemistry: the interaction of CoO(100), Co3O4(110) and Co3O4(111) with oxygen and water. J Mol Catal A Chem 281:49–58. https://doi.org/10.1016/j.molcata.2007.08.023

    Article  CAS  Google Scholar 

  62. Sharma S, Hegde MS (2009) Pt metal-CeO2 interaction: direct observation of redox coupling between Pt0/Pt2+/Pt4+ and Ce4+/Ce3+ states in Ce0.98Pt0.02O2−δ catalyst by a combined electrochemical and x-ray photoelectron spectroscopy study. J Chem Phys 130(11):114706. https://doi.org/10.1063/1.3089666

    Article  PubMed  CAS  Google Scholar 

  63. Sharma S, Singh P, Hegde MS (2011) Electrocatalysis and redox behavior of Pt2+ ion in CeO2 and Ce0.85Ti0.15O2: XPS evidence of participation of lattice oxygen for high activity. J Solid State Electrochem 15:2185–2197. https://doi.org/10.1007/s10008-011-1402-z

    Article  CAS  Google Scholar 

  64. Sharma S, Mukri BD, Hegde MS (2011) Direct evidence of redox interaction between metal ion and support oxide in Ce0.98Pd0.02O2−δ by a combined electrochemical and XPS study. Dalton Trans 40:11480–11489. https://doi.org/10.1039/C1DT11262G

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

DV and SD acknowledges Indian Institute of Technology Gandhinagar for providing fellowship and Central Instrumentation Facility for carrying out the characterization. SS acknowledges Department of Science and technology and Science and Engineering Research Board sponsored research project (EMR/2016/000806) for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aditi Singhal or Sudhanshu Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2164 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vyas, D., Dhakar, S., Singhal, A. et al. Preparation and Oxygen Evolution Reaction on Nanoporous Semi-transparent La0.8Sr0.2CoO3 Coatings: Stability and Mechanism in Neutral Medium. Top Catal (2024). https://doi.org/10.1007/s11244-024-02002-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11244-024-02002-x

Keywords

Navigation