[go: up one dir, main page]

Skip to main content
Log in

Low-Cost Cell Based on Symmetric Stripline for Soil Permittivity Measurement in the Frequency Range of 0.1–1 MHz TO 5–7 GHz

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The paper presents results of finite element modeling, development of and experiments with the measuring cell based on a symmetric stripline for measuring coarse-grained soil permittivity. The wave impedance of the measuring cell section intended for filling with soil, is about 80 Ω to expand the frequency range. This allows reducing the width of the central strip and increasing the critical frequency, which cause the higher-order modes. Cell sections with the transfer from SMA connectors to measuring section are filled with a solid dielectric. The distance between outer conductors and the central strip width in these sections, are linearly increased to the size of the measuring section to provide the wave impedance of 50 Ω. The wave impedance growth in the measuring section is considered in the soil complex permittivity calculations. The complex permittivity is measured for five calibration liquids with the static permittivity of 2.27 (transformer oil) to 78.5 (water) and three soil samples with different moisture. It is shown that acceptable values of measurement error can be obtained if the real part of the complex permittivity does not exceed 23–25 units at a frequency of ~1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. M. Zawilski, F. Granouillac, N. Claverie, B. Lemaire, A. Brut, and T. Tallec, Geoscientific Instrumentation Methods and Data Systems., 12, No. 1, 45 (2023); https://doi.org/10.5194/gi-12-45-2023.

  2. P. P. Bobrov, T. A. Belyaeva, E. S. Kroshka, and O. V. Rodionova, Eurasian Soil Sci., 52, No. 7, 822 (2019); https://doi.org/10.1134/S106422931905003X.

  3. L. Dong, W. Wang, F. Xu, and Y. Wu, IEEE Geosci. Remote S. Lett., 19, 3003405 (2021); https://doi.org/10.1109/LGRS.2021.3085594.

    Article  Google Scholar 

  4. J.-P. Wigneron, T. J. Jackson, P. O'Neill, et al., Remote Sens. Environ., 192, 23 (2017); https://doi.org/10.1016/j.rse.2017.01.024.

    Article  Google Scholar 

  5. S. Periasamy and K. P. Ravi, Remote Sens. Environ., 251, 112059 (2020); https://doi.org/10.1016/j.rse.2020.112059.

    Article  Google Scholar 

  6. N. Wagner and A. Scheuermann, Can. Geotech. J., 46, No. 10, 1202 (2009); https://doi.org/10.1139/T09-055.

  7. P. P. Bobrov, N. A. Golikov, E. S. Kroshka, and A. V. Repin, J. Appl. Geophy., 204, 104750 (2022); https://doi.org/10.1016/j.jappgeo.2022.104750.

    Article  Google Scholar 

  8. M. Loewer, T. Günther, J. Igel, et al., Geophys. J. Int., 210, No. 3, 1360 (2017); https://doi.org/10.1093/gji/ggx242.

  9. P. P. Bobrov, E. S. Kroshka, and K. V. Muzalevskiy, IEEE Trans. Geosci. Remote Sens., 62, 2000411 (2024); https://doi.org/10.1109/TGRS.2023.3340693.

    Article  Google Scholar 

  10. M. T. Jilani, M. Z. ur Rehman, A. M. Khan, M. T. Khan, and S. M. Ali, Int. J. Inf. Technol. Electr. Eng., 1, No. 1 (2012).

  11. M. S. Venkatesh, and G. S. V. Raghavan, Can. Biosyst. Eng., 47, No. 7, 15–30 (2005); www.researchgate.net/publication/235435108.

  12. W. B. Weir, Proc. IEEE, 62, No. 1, 33 (1974); https://doi.org/10.1109/PROC.1974.9382.

  13. A. Gorriti and E. Slob, IEEE Trans. Geosci. Remote Sens., 43, No. 9, 2051 (2005).

    Article  ADS  Google Scholar 

  14. N. Wagner, M. Schwing, and A. Scheuermann, IEEE Trans. Geosci. Remote Sens., 52, No. 2, 880–893 (2014).

    Article  ADS  Google Scholar 

  15. C. P. Gallagher, N. Cole, P. P. Savage, et al., IEEE Trans. Microw. Theory Tech., 67, No. 1, 231–238 (2019); https://doi.org/10.1109/TMTT.2018.2851563.

    Article  Google Scholar 

  16. K. C. Lawrence, D. B. Funk, and W. R. Windham, Trans. ASABE, 44, No. 6, 1691–1696 (2001); https://doi.org/10.13031/2013.6979.

    Article  Google Scholar 

  17. D. B. Funk, Z. Gillay, and P. Meszaros, Meas. Sci. Technol., 18, No. 4, 1004–1015 (2007); https://doi.org/10.1088/0957-0233/18/4/007.

    Article  ADS  Google Scholar 

  18. D. B. Funk and Z. Gillay, Trans. ASABE, 53, No. 1, 271–281 (2010); https://doi.org/10.13031/2013.29492.

    Article  Google Scholar 

  19. P. Shiffres, Microwaves, No. 6, 25–34 (1966).

    Google Scholar 

  20. P. P. Bobrov, Yu. A. Kostychov, S. V. Krivaltsevich, and O. V. Rodionova, Device for Spectra Measurements of Soil Permittivity in Wide Frequency Band Using Symmetric Stripline, RF Patent No. 2810948 (January 1, 2024).

  21. 21. M. A. R. Gunston, Microwave Transmission – Line Impedance Data, Van Nostrand Reinhold Company LTD, New York, Cincinnati, Toronto, Melbourne (1972).

  22. P. P. Bobrov and O. V. Rodionova, Russ. Phys. J., 65, 1213–1220 (2022); https://doi.org/10.1007/s11182-022-02753-8.

    Article  Google Scholar 

  23. P. P. Bobrov, A.V. Repin, and O. V. Rodionova, IEEE Trans. Geosci. Remote Sens., 53, No. 5, 2366–2372 (2015). https://doi.org/10.1109/TGRS.2014.2359092.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Bobrov.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrov, P.P., Kostychov, Y.A., Krivaltsevich, S.V. et al. Low-Cost Cell Based on Symmetric Stripline for Soil Permittivity Measurement in the Frequency Range of 0.1–1 MHz TO 5–7 GHz. Russ Phys J (2024). https://doi.org/10.1007/s11182-024-03243-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s11182-024-03243-9

Keywords

Navigation