[go: up one dir, main page]

Skip to main content
Log in

Improved confidence intervals for nonlinear mixed-effects and nonparametric regression models

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Statistical inference for high-dimensional parameters (HDPs) can leverage their intrinsic correlations, as spatially or temporally close parameters tend to have similar values. This is why nonlinear mixed-effects models (NMMs) are commonly used for HDPs. Conversely, in many practical applications, the random effects (REs) in NMMs are correlated HDPs that should remain constant during repeated sampling for frequentist inference. In both scenarios, the inference should be conditional on REs, instead of marginal inference by integrating out REs. We summarize recent theory of conditional inference for NMM, and then propose a bias-corrected RE predictor and confidence interval (CI). We also extend this methodology to accommodate the case where some REs are not associated with data. Simulation studies indicate our new approach leads to substantial improvement in the conditional coverage rate of RE CIs, including CIs for smooth functions in generalized additive models, compared to the existing method based on marginal inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aeberhard, W. H., Mills Flemming, J., Nielsen, A. (2018). Review of state-space models for fisheries science. Annual Review of Statistics and Its Application, 5, 215–235.

    Article  Google Scholar 

  • Ben-Israel, A., Greville, T. N. (2003). Generalized inverses: theory and applications (Vol. 15). New York: Springer Science & Business Media.

    Google Scholar 

  • Cheng, M.-Y., Huang, T., Liu, P., Peng, H. (2018). Bias reduction for nonparametric and semiparametric regression models. Statistica Sinica, 28(4), 2749–2770.

    MathSciNet  Google Scholar 

  • Feller, W. (2008). An introduction to probability theory and its applications (Vol. 2). India: John Wiley & Sons.

    Google Scholar 

  • Flores-Agreda, D., Cantoni, E. (2019). Bootstrap estimation of uncertainty in prediction for generalized linear mixed models. Computational Statistics and Data Analysis, 130, 1–17.

    Article  MathSciNet  Google Scholar 

  • Fournier, D. A., Skaug, H. J., Ancheta, J., Ianelli, J., Magnusson, A., Maunder, M. N., Nielsen, A., Sibert, J. (2012). Ad model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optimization Methods and Software, 27(2), 233–249.

    Article  MathSciNet  Google Scholar 

  • He, H., Severini, T. A. (2016). A flexible approach to inference in semiparametric regression models with correlated errors using gaussian processes. Computational Statistics and Data Analysis, 103, 316–329.

    Article  MathSciNet  Google Scholar 

  • Kass, R. E., Steffey, D. (1989). Approximate bayesian inference in conditionally independent hierarchical models (parametric empirical bayes models). Journal of the American Statistical Association, 84(407), 717–726.

    Article  MathSciNet  Google Scholar 

  • Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H., Bell, B. (2015). Tmb: automatic differentiation and laplace approximation, arXiv preprint arXiv:1509.00660.

  • Laird, N. M., Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  Google Scholar 

  • Lindgren, F., Rue, H., Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 73(4), 423–498.

    Article  MathSciNet  Google Scholar 

  • Marra, G., Wood, S. N. (2012). Coverage properties of confidence intervals for generalized additive model components. Scandinavian Journal of Statistics, 39(1), 53–74.

    Article  MathSciNet  Google Scholar 

  • Nychka, D. (1988). Bayesian confidence intervals for smoothing splines. Journal of the American Statistical Association, 83(404), 1134–1143.

    Article  MathSciNet  Google Scholar 

  • R Core Team (2022). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Rohde, R. A., Hausfather, Z. (2020). The berkeley earth land/ocean temperature record. Earth System Science Data, 12(4), 3469–3479.

    Article  Google Scholar 

  • Skaug, H. J., Fournier, D. A. (2020). Random Effects in AD Model Builder. ADMB-RE User Guide, version 12.1 edn, ADMB Foundation, Honolulu.

  • Thorson, J. T., Kristensen, K. (2016). Implementing a generic method for bias correction in statistical models using random effects, with spatial and population dynamics examples. Fisheries Research, 175, 66–74.

    Article  Google Scholar 

  • Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223–249.

    Article  Google Scholar 

  • Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(1), 3–36.

    Article  MathSciNet  Google Scholar 

  • Wood, S. N. (2020). Inference and computation with generalized additive models and their extensions. TEST, 29(2), 307–339.

    Article  MathSciNet  Google Scholar 

  • Wood, S. N., Pya, N., Säfken, B. (2016). Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association, 111(516), 1548–1563.

    Article  MathSciNet  Google Scholar 

  • Wood, S. N., Scheipl, F., Faraway, J. J. (2013). Straightforward intermediate rank tensor product smoothing in mixed models. Statistics and Computing, 23(3), 341–360.

    Article  MathSciNet  Google Scholar 

  • Zheng, N., Cadigan, N. (2021). Frequentist delta-variance approximations with mixed-effects models and tmb. Computational Statistics & Data Analysis, 160, 107227.

    Article  MathSciNet  Google Scholar 

  • Zheng, N., Cadigan, N. (2023). Frequentist conditional variance for nonlinear mixed-effects models. Journal of Statistical Theory and Practice, 17(1), 1–30.

    Article  MathSciNet  Google Scholar 

  • Zheng, N., Sutradhar, B. C. (2018). Inferences in semi-parametric dynamic mixed models for longitudinal count data. Annals of the Institute of Statistical Mathematics, 70(1), 215–247.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous referees and the associate editor for their valuable comments that improved the paper’s quality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel Cadigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, N., Cadigan, N. Improved confidence intervals for nonlinear mixed-effects and nonparametric regression models. Ann Inst Stat Math (2024). https://doi.org/10.1007/s10463-024-00909-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10463-024-00909-6

Keywords

Navigation