[go: up one dir, main page]

Skip to main content
Log in

Oscillatory Periodic Solutions of Nonlinear Second Order Ordinary Differential Equations

  • ORIGINAL ARTICLES
  • Published:
Acta Mathematica Sinica Aims and scope Submit manuscript

Abstract

In this paper the existence results of oscillatory periodic solutions are obtained for a second order ordinary differential equation −u"(t) = f(t, u(t)), where f : R 2R is a continuous odd function and is 2π–periodic in t. The discussion is based on the fixed point index theory in cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leela, S.: Monotone method for second order periodic boundary value problems. Nonlinear Anal., 7, 349–355 (1983)

    Article  MathSciNet  Google Scholar 

  2. Nieto, J. J.: Nonlinear second–order periodic boundary value problems. J. Math. Anal. Appl., 130, 22–29 (1988)

    Article  MathSciNet  Google Scholar 

  3. Cabada, A., Nieto, J. J.: A generation of the monotone iterative technique for nonlinear second–order periodic boundary value problems. J. Math. Anal. Appl., 151, 181–189 (1990)

    Article  MathSciNet  Google Scholar 

  4. Cabada, A.: The method of lower and upper solutions for second, third, forth, and higher order boundary value problems. J. Math. Anal. Appl., 185, 302–320 (1994)

    Article  MathSciNet  Google Scholar 

  5. Gossez, J. P., Omari, P.: Periodic solutions of a second order ordinary differential equation: A necessary and sufficient condition for nonresonance. J. Diff. Equs., 94, 67–82 (1991)

    Article  MathSciNet  Google Scholar 

  6. Omari, P., Villari, G., Zandin, F.: Periodic solutions of Lienard equation with one–sided growth restrictions. J. Diff. Equs., 67, 278–293 (1987)

    Article  MathSciNet  Google Scholar 

  7. Ge, W. G.: On the existence of harmonic solutions of Lienard system. Nonlinear Anal., 16, 183–190 (1991)

    Article  MathSciNet  Google Scholar 

  8. Mawhin, J., Willem, M.: Multiple solutions of the periodic boundary value problem for some forced pendulum–type equations. J. Diff. Equs., 52, 264–287 (1984)

    Article  MathSciNet  Google Scholar 

  9. Zelati, V. C.: Periodic solutions of dynamical systems with bounded potential. J. Diff. Equs., 67, 400–413 (1987)

    Article  Google Scholar 

  10. Lassoued, L.: Periodic solutions of a second order superquadratic system with a change of Sign in potential. J. Diff. Equs., 93, 1–18 (1991)

    Article  MathSciNet  Google Scholar 

  11. Ding, T. R.: Nonlinear oscillations at a point of resonance. Scientia Sinica, Sir. A, 12(8), 918–931 (1982)

    Google Scholar 

  12. Ding, W. Y.: Fixed points of twist mapping and periodic solutions of ordinary differential equations. Acta Math. Sinica, Chinese Series, 25, 227–235 (1982)

    Google Scholar 

  13. Li, W. G.: A necessary and sufficient condition on existence and uniqueness of 2π–periodic solution of Duffing equation. Chinese Ann. Math., 11B, 342–345 (1990)

    Google Scholar 

  14. Li, Y. X.: Positive periodic solutions of nonlinear second order ordinary differential equations. Acta Math. Sinica, Chinese Series, 45, 481–488 (2002)

    Google Scholar 

  15. Wang, H.: On the existence of positive solutions for semilinear elliptic equations in the annulus. J. Diff. Equs., 109, 1–7 (1994)

    Article  Google Scholar 

  16. Erbe, H. L., Wang, H.: On the existence of positive solutions of ordinary differential equations. Proc. Amer. Math. Soc., 120, 743–748 (1994)

    Article  MathSciNet  Google Scholar 

  17. Liu, Z. L., Li, F. Y.: Multiple positive solutions of nonlinear two–point boundary value problems. J. Math. Anal. Appl., 203, 610–625 (1996)

    Article  MathSciNet  Google Scholar 

  18. Henderson, J., Wang, H.: Positive solutions for nonlinear eigenvalue problems. J. Math. Anal. Appl., 208, 610–625 (1997)

    Article  Google Scholar 

  19. Guo, D. J.: Nonlinear Functional Analysis, Shandong Science and Technoligy Press, Jinan, 1985 (in Chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Xiang Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y.X. Oscillatory Periodic Solutions of Nonlinear Second Order Ordinary Differential Equations. Acta Math Sinica 21, 491–496 (2005). https://doi.org/10.1007/s10114-004-0444-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-004-0444-x

Keywords

MR (2000) Subject Classification

Navigation