Abstract
One major challenge in executing a quantum circuit is the restriction on physical qubit interaction. The elementary gates in a quantum circuit must strictly conform to the hardware’s qubit coupling constraints before they are executed. This requires doing an initial mapping of input circuit qubits to physical qubits alongside satisfying qubit couplings specified by a qubit coupling map. Currently, quantum computing architectures possess the restrictions of limited qubit interaction distance and the inability of multi-qubit interaction. Two qubits of a quantum gate can interact if they locate adjacent to each other. During the execution of a quantum circuit, it is essential to re-arrange qubits for adjacency. As a result, the number of gates increases. We can address these issues by mapping the qubits of the input circuit to hardware and performing qubit re-ordering with minimal additional gates. In the proposed work, we efficiently generate a good initial qubit mapping that attempts to keep frequently interacting qubits together and use a multi-window look-ahead technique for qubit re-ordering. The proposed work is evaluated on the most recent IBM Q 16 Melbourne device. The experimental evaluation confirms the effectiveness of our work for minimizing the circuit cost and depth.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alfailakawi, M.G., Ahmad, I., Hamdan, S.: Harmony-search algorithm for 2D nearest neighbor quantum circuits realization. Expert Syst. Appl. 61(C), 16–27 (2016) https://doi.org/10.1016/j.eswa.2016.04.038
Bhattacharjee, D., Chattopadhyay, A.: Depth-optimal quantum circuit placement for arbitrary topologies. CoRR abs/1703.08540 (2017). arXiv:org/abs/1703.08540
Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis of reversible circuits by graph partitioning. CoRR (2011). arXiv:org/abs/1112.0564
Chhangte, L., Chakrabarty, A.: Optimization of local ordering technique for nearest neighbour circuits. In: A. Bhattacharjee, S.K. Borgohain, B. Soni, G. Verma, X.Z. Gao (eds.) Machine Learning, Image Processing, Network Security and Data Sciences, pp. 182–192. Springer Singapore, Singapore (2020). https://doi.org/10.1007/978-981-15-6318-8_16
Chhangte, L., Chakrabarty, A.: Technique for two-dimensional nearest neighbour realisation of quantum circuits using weighted look-ahead. IET Comput. Digit. Tech. 14, 281–289 (2020). https://doi.org/10.1049/iet-cdt.2019.0257
Cross, A.W., Bishop, L.S., Smolin, J.A., Gambetta, J.M.: Open quantum assembly language. arXiv e-prints arXiv:1707.03429 (2017). arXiv:org/abs/1707.03429v2
Dueck, G.W., Pathak, A., Rahman, M.M., Shukla, A., Banerjee, A.: Optimization of circuits for ibm’s five-qubit quantum computers. In: 2018 21st Euromicro Conference on Digital System Design (DSD), pp. 680–684 (2018). https://doi.org/10.1109/DSD.2018.00005
Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum programming language. SIGPLAN Not. 48(6), 333–342 (2013). https://doi.org/10.1145/2499370.2462177
IBM QX device. https://quantumexperience.ng.bluemix.net/qx/devices. Accessed: 2021-11-10
Itoko, T., Raymond, R., Imamichi, T., Matsuo, A.: Optimization of quantum circuit mapping using gate transformation and commutation. Integration 70, 43–50 (2020). https://doi.org/10.1016/j.vlsi.2019.10.004
Javadi Abhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T., Martonosi, M.: Scaffcc: A framework for compilation and analysis of quantum computing programs. In: Proceedings of the 11th ACM Conference on Computing Frontiers, CF ’14. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2597917.2597939
Kole, A., Datta, K.: Improved ncv gate realization of arbitrary size toffoli gates. In: 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID), pp. 289–294 (2017). https://doi.org/10.1109/VLSID.2017.11
Kole, A., Datta, K., Sengupta, I.: A new heuristic for N-dimensional nearest neighbor realization of a quantum circuit. IEEE Trans. Comput. Aid. Design Integr. Circ. Syst. 37(1), 182–192 (2018). https://doi.org/10.1109/TCAD.2017.2693284
Kole, A., Hillmich, S., Datta, K., Wille, R., Sengupta, I.: Improved mapping of quantum circuits to ibm qx architectures. IEEE Trans. Comput. Aid. Design Integr. Circ. Syst. 39(10), 2375–2383 (2020). https://doi.org/10.1109/TCAD.2019.2962753
Li, G., Ding, Y., Xie, Y.: Tackling the qubit mapping problem for NISQ-era quantum devices. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’19, pp. 1001–1014. ACM, New York, NY, USA (2019). https://doi.org/10.1145/3297858.3304023
Lin, C., Sur-Kolay, S., Jha, N.K.: PAQCS: Physical design-aware fault-tolerant quantum circuit synthesis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(7), 1221–1234 (2015). https://doi.org/10.1109/TVLSI.2014.2337302
Lye, A., Wille, R., Drechsler, R.: Determining the minimal number of swap gates for multi-dimensional nearest neighbor quantum circuits. In: The 20th Asia and South Pacific Design Automation Conference, pp. 178–183 (2015). https://doi.org/10.1109/ASPDAC.2015.7059001
Mapping of quantum circuits. https://iic.jku.at/eda/research/ibm_qx_mapping/. Accessed: 2021-11-01
Matsumoto, K., Amano, K.: Representation of quantum circuits with clifford and \(\pi /8\) gates (2008). arXiv:org/abs/0806.3834
Matsuo, A., Hattori, W., Yamashita, S.: Reducing the overhead of mapping quantum circuits to ibm q system. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5 (2019). https://doi.org/10.1109/ISCAS.2019.8702439
Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for multiple-control toffoli gates. In: 2011 41st IEEE International Symposium on Multiple-Valued Logic, pp. 288–293 (2011). https://doi.org/10.1109/ISMVL.2011.54
Mohammad, A., Laila, A., Imtiaz, A., Suha, H.: Line ordering of reversible circuits for linear nearest neighbor realization. Quant. Inform. Process. 12(10), 3319–3339 (2013). https://doi.org/10.1007/s11128-013-0601-1
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th edn. Cambridge University Press, New York (2011)
Niemann, P., de Almeida, A.A.A., Dueck, G., Drechler, R.: Design space exploration in the mapping of reversible circuits to ibm quantum computers. In: 2020 Euromicro Conference on Digital System Design (DSD), vol. 1, pp. 401–407. IEEE Computer Society, Los Alamitos, CA, USA (2020). https://doi.org/10.1109/DSD51259.2020.00070
Paler, A.: On the influence of initial qubit placement during NISQ circuit compilation. arXiv e-prints (2018). arXiv:org/abs/1811.08985v2
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79
Qiskit. https://qiskit.org/. Accessed: 2021-11-10
Rahman, M.M., Dueck, G.W., Chattopadhyay, A., Wille, R.: Integrated synthesis of linear nearest neighbor ancilla-free MCT circuits. In: 2016 IEEE 46th International Symposium on Multiple-Valued Logic (ISMVL), pp. 144–149 (2016). https://doi.org/10.1109/ISMVL.2016.54
Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest neighbor architectures. Quant. Inform. Process. 10(3), 355–377 (2011). https://doi.org/10.1007/s11128-010-0201-2
Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interaction distance in linear nearest neighbor architectures. In: 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2013). https://doi.org/10.1145/2463209.2488785
Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication overhead in 2D quantum architectures. In: 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 495–500. IEEE (2014). https://doi.org/10.1109/ASPDAC.2014.6742940
Siraichi, M.Y., Santos, V.F.d., Collange, S., Pereira, F.M.Q.: Qubit allocation. In: Proceedings of the 2018 International Symposium on Code Generation and Optimization, CGO 2018, p. 113–125. Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3168822
Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online resource for reversible functions and reversible circuits. In: 38th International Symposium on Multiple Valued Logic (ismvl 2008), pp. 220–225. Dallas, TX (2008). https://doi.org/10.1109/ISMVL.2008.43
Wille, R., Saeedi, M., Drechsler, R.: Synthesis of reversible functions beyond gate count and quantum cost. In: International Workshop on Logic Synthesis (IWLS) (2010). arXiv:org/abs/1004.4609
Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neighbor quantum architectures. IEEE Trans. Comput. Aid. Design Integr. Circ. Syst. 33(12), 1818–1831 (2014). https://doi.org/10.1109/TCAD.2014.2356463
Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.: Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum circuits. In: 2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 292–297 (2016). https://doi.org/10.1109/ASPDAC.2016.7428026
Wille, R., Burgholzer, L., Zulehner, A.: Mapping quantum circuits to ibm qx architectures using the minimal number of swap and h operations. In: Proceedings of the 56th Annual Design Automation Conference 2019, DAC ’19. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3316781.3317859
Yamanaka, K., Demaine, E.D., Ito, T., Kawahara, J., Kiyomi, M., Okamoto, Y., Saitoh, T., Suzuki, A., Uchizawa, K., Uno, T.: Swapping labeled tokens on graphs. Theor. Comput. Sci. 586, 81–94 (2015). https://doi.org/10.1016/j.tcs.2015.01.052
Zhang, X., Xiang, H., Xiang, T., Fu, L., Sang, J.: An efficient quantum circuits optimizing scheme compared with qiskit. In: Collaborative Computing: Networking, Applications and Worksharing, pp. 467–476. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12981-1_32
Zulehner, A., Paler, A., Wille, R.: Efficient mapping of quantum circuits to the IBM QX architectures. In: 2018 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1135–1138 (2018). https://doi.org/10.23919/DATE.2018.8342181
Zulehner, A., Wille, R.: Compiling su(4) quantum circuits to ibm qx architectures. In: ASPDAC ’19: Proceedings of the 24th Asia and South Pacific Design Automation Conference, pp. 185–190. Association for Computing Machinery, New York, NY, USA (2019). https://doi.org/10.1145/3287624.3287704
Acknowledgements
We acknowledge the use of IBM Quantum services for this work. The views expressed are those of the authors, and do not reflect the official policy or position of IBM or the IBM Quantum team.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Chhangte, L., Chakrabarty, A. Mapping Quantum Circuits in IBM Q Devices Using Progressive Qubit Assignment for Global Ordering. New Gener. Comput. 40, 311–338 (2022). https://doi.org/10.1007/s00354-022-00163-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-022-00163-5