Abstract
Poly(lactide) (PLA) has been developed and made commercially available in recent years. One of the major tasks to be taken before the widespread application of PLA is the fundamental understanding of its biodegradation mechanisms. This paper provides a short overview on the biodegradability and biodegradation of PLA. Emphasis is focused mainly on microbial and enzymatic degradation. Most of the PLA-degrading microorganisms phylogenetically belong to the family of Pseudonocardiaceae and related genera such as Amycolatopsis, Lentzea, Kibdelosporangium, Streptoalloteichus, and Saccharothrix. Several proteinous materials such as silk fibroin, elastin, gelatin, and some peptides and amino acids were found to stimulate the production of enzymes from PLA-degrading microorganisms. In addition to proteinase K from Tritirachium album, subtilisin, a microbial serine protease and some mammalian serine proteases such as α-chymotrypsin, trypsin, and elastase could also degrade PLA.

Similar content being viewed by others
References
Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic rule, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472
Cai H, Dave V, Gross RA, McCarthy SP (1996) Effects of physical aging, crystallinity, and orientation on the enzymatic degradation of poly(lactic acid). J Polym Sci B Polym Phys 34:2701–2708
Doi Y (1990) Microbial polyesters. VCH, New York
Fukuzaki H, Yoshida M, Asano M, Kumakura M (1989) Synthesis of copoly(d,l-Lactic acid) with relatively low molecular weight and in vitro degradation. Eur Polym J 25:1019–1026
Ikura Y, Kudo T (1999) Isolation of a microorganism capable of degrading poly(l-lactide). J Gen Appl Microbiol 45:247–251
Iwata T, Doi Y (1998) Morphology and enzymatic degradation of poly(l-lactic acid) single crystals. Macromolecules 31:2461–2467
Jarerat A, Tokiwa Y (2001) Degradation of poly(l-lactide) by fungus. Macromol Biosci 1:136–140
Jarerat A, Tokiwa Y (2003a) Poly(l-lactide) degradation by Saccharotrix waywayandensis. Biotechnol Lett 25:401–404
Jarerat A, Tokiwa Y (2003b) Poly(l-lactide) degradation by Kibdelosporangium aridum. Biotechnol Lett 25:2035–2038
Jarerat A, Pranamuda H, Tokiwa Y (2002) Poly(l-lactide)-degrading activity in various actinomycetes. Macromol Biosci 2:420–428
Jarerat A, Tokiwa Y, Tanaka H (2004) Microbial poly(l-lactide)-degrading enzyme induced by amino acids, peptides and poly(l-amino acids). J Polym Environ 12:139–146
Li S, McCarthy (1999) Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s. Macromolecules 32:4454–4456
Lim HA, Raku T, Tokiwa Y (2004) A new method for the evaluation of biodegradable plastic using coated cellulose paper. Macromol Biosci 4:875–881
Lim HA, Raku T, Tokiwa Y (2005) Hydrolysis of polyesters by serine proteases. Biotechnol Lett 27:459–464
Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152
Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53
Masaki K, Kamini NR, Ikeda H, Iefuji H (2005) Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyses polylactic acid and other biodegradable plastics. Appl Environ Microbiol 7:7548–7550
McDonald RT, McCarthy S, Gross RA (1996) Enzymatic degradability of poly(lactide): effects of chain stereochemistry and material crystallinity. Macromolecules 29:7356–7361
Moon SI, Urayama H, Kimura Y (2003) Structural characterization and degradability of poly(l-lactic acid)s incorporating phenyl-substituted alpha-hydroxy acids as comonomers. Macromol Biosci 3:301–309
Nakamura K, Tomita T, Abe N, Kamio Y (2001) Purification and characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Appl Environ Microbiol 67:345–353
Nishida H, Tokiwa Y (1992) Effects of higher-order structure of poly(3-hydroxybutyrate) on its biodegradation. I. Effects of heat treatment on microbial degradation. J Appl Polym Sci 46:1467–1476
Nishida H, Tokiwa Y (1993) Distribution of poly (â-hydroxybutyrate) and poly (å-caprolactone) aerobic degrading microorganisms in different environments. J Environ Polym Degrad 1:227–233
Oda Y, Yonetsu A, Urakami T, Tomomura K (2000) Degradation of polylactide by commercial proteases. J Polym Environ 8:29–32
Ohkita T, Lee SH (2006) Thermal degradation and biodegradability of poly(lactic acid)/corn starch biocomposites. J Appl Polym Sci 100:3009–3017
Pranamuda H, Tokiwa Y (1999) Degradation of poly(l-lactide) by strains belonging to genus Amycolatopsis. Biotechnol Lett 21:901–905
Pranamuda H, Tokiwa Y, Tanaka H (1997) Polylactide degradation by an Amycolatopsis sp. Appl Environ Microbiol 63:1637–1640
Pranamuda H, Chollakup R, Tokiwa Y (1999) Degradation of polycarbonate by a polyester-degrading strain, Amycolatopsis sp. strain HT-6. Appl Environ Microbiol 65:4220–4222
Pranamuda H, Tsuchii A, Tokiwa Y (2001) Poly(l-lactide)-degrading enzyme produced by Amycolatopsis sp. Macromol Biosci 1:25–29
Reeve, MS, McCarthy SP, Downey MJ, Gross RA (1994) Polylactide stereochemistry: effect on enzymatic degradability. Macromolecules 27:825–831
Sakai K, Kawano H, Iwami A, Nakamura M, Moriguchi M (2001) Isolation of a thermophilic poly-l-lactide degrading bacterium from compost and its enzymatic characterization. J Biosci Bioeng 92:298–300
Shigeno YA, Teeraphatpornchai T, Teamtisong K, Nomura N, Uchiyama H, Nakahara T, Kambe TN (2003) Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli. Appl Environ Microbiol 69:2498–2504
Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24
Suyama T, Tokiwa Y, Ouichanpagdee P, Kanagawa T, Kamagata Y (1998) Phylogenetic affiliation of soil bacteria that degrade aliphatic polyesters available commercially as biodegradable plastics. Appl Environ Microbiol 64:5008–5011
Takahashi Y, Okajima S, Toshima K, Matsumura S (2004) Lipase-catalyzed transformation of poly(lactic acid) into cyclic oligomers. Macromol Biosci 4:346–353
Tansengco ML, Tokiwa Y (1998) Comparative population study of aliphatic polyesters-degrading microorganisms at 50 °C. Chem Lett 27:1043–1044
Tokiwa Y, Suzuki T (1978) Hydrolysis of polyesters by Rhizopus delemar lipase. Agric Biol Chem 42:1071–1072
Tokiwa Y, Suzuki T (1981) Hydrolysis of copolyesters containing aromatic and aliphatic ester blocks by lipase. J Appl Polym Sci 26:441–448
Tokiwa Y, Suzuki T, Ando T (1979) Synthesis of copolyamide-esters and some aspects involved in their hydrolysis by lipase. J Appl Polym Sci 24:1701–1711
TokiwaY, Konno M, Nishida H (1999) Isolation of silk degrading microorganisms and its poly(l-lactide) degradability. Chem Lett 28: 355–356
Tokiwa Y, Pranamuda H, Rivaldi JD (2002) Polymerization of poly(d-lactide) and polyglycolide creates a novel biodegradable polymer (paper presented on the 10th Annual meeting of the BioEnvironmental Polymer Society, New Mexico, USA)
Tomita K, Kuroki Y, Nagai K (1999) Isolation of thermophiles degrading poly(l-lactic acid). J Biosci Bioeng 87:752–755
Tomita K, Tsuji H, Nakajima T, Kikuchi Y, Ikarashi K, Ikeda N (2003) Degradation of poly(d-lactic acid) by a thermophile. Polym Degrad Stab 81:167–171
Tomita K, Nakajima T, Kikuchi Y, Miwa N (2004) Degradation of poly(l-lactic acid) by a newly isolated thermophile. Polym Degrad Stab 84:433–438
Torres A, Li SM, Roussos S, Vert M (1996a) Degradation of l-and dl-lactic acid oligomers in the presence of Fusarium moniliforme and Pseudomonas putida. J Environ Polym Degrad 4:213–223
Torres A, Li SM, Roussos S, Vert M (1996b) Screening of microorganisms for biodegradation of poly(lactic acid) and lactic acid-containing polymers. Appl Environ Microbiol 62:2393–2397
Tsuji H, Ishizaka T (2001) Preparation of porous poly(δ-caprolactone) films from blends by selective enzymatic removal of poly(l-lactide). Macromol Biosci 1:359–365
Tsuji H, Miyauchi S (2001) Poly(l-lactide) 6. Effects of crystallinity on enzymatic hydrolysis of poly(l-lactide) without free amorphous region. Polym Degrad Stab 71:415–424
Urayama H, Kanamori T, Kimura Y (2002) Properties and biodegradability of polymer blends of poly(l-lactide)s with different optical purity of the lactate units. Macromol Mater Eng 287:116–121
Vert M, Li S, Garreau H (1991) More about the degradation of LA/GA-derived matrices in aqueous media. J Control Release 16:15–26
Williams DF (1981) Enzymatic hydrolysis of polylactic acid. Eng Med 10:5–7
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tokiwa, Y., Calabia, B.P. Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72, 244–251 (2006). https://doi.org/10.1007/s00253-006-0488-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00253-006-0488-1