Abstract
A concrete model of extracting the physics from the bulk of a gravitational universe is important to the study of quantum gravity and its possible relationship with experiments. Such a model can be constructed in the AdS/CFT correspondence by gluing a bath on the asymptotic boundary of the bulk anti-de Sitter (AdS) spacetime. This bath models a laboratory and is described by a quantum field theory. In the dual conformal field theory (CFT) description this coupling is achieved by a double-trace deformation that couples the CFT with the bath. This suggests that the physics observed by the laboratory is fully unitary. In this paper, we analyze the quantum aspects of this model in detail which conveys new lessons about the AdS/CFT correspondence, and we discuss the potential usefulness of this model in understanding subregion physics in a gravitational universe.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
S.D. Mathur, The information paradox and the infall problem, Class. Quant. Grav. 28 (2011) 125010 [arXiv:1012.2101] [INSPIRE].
S.D. Mathur and C.J. Plumberg, Correlations in Hawking radiation and the infall problem, JHEP 09 (2011) 093 [arXiv:1101.4899] [INSPIRE].
K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].
D.L. Jafferis and L. Lamprou, Inside the hologram: reconstructing the bulk observer’s experience, JHEP 03 (2022) 084 [arXiv:2009.04476] [INSPIRE].
J. de Boer, D.L. Jafferis and L. Lamprou, On black hole interior reconstruction, singularities and the emergence of time, arXiv:2211.16512 [INSPIRE].
E. Witten, Gravity and the crossed product, JHEP 10 (2022) 008 [arXiv:2112.12828] [INSPIRE].
E. Witten, Algebras, regions, and observers, Proc. Symp. Pure Math. 107 (2024) 247 [arXiv:2303.02837] [INSPIRE].
J.V. Rocha, Evaporation of large black holes in AdS: Coupling to the evaporon, JHEP 08 (2008) 075 [arXiv:0804.0055] [INSPIRE].
C. Jana, R. Loganayagam and M. Rangamani, Open quantum systems and Schwinger-Keldysh holograms, JHEP 07 (2020) 242 [arXiv:2004.02888] [INSPIRE].
R. Loganayagam, M. Rangamani and J. Virrueta, Holographic open quantum systems: toy models and analytic properties of thermal correlators, JHEP 03 (2023) 153 [arXiv:2211.07683] [INSPIRE].
X.-Y. Shen, Long range SYK model and boundary SYK model, arXiv:2308.12598 [INSPIRE].
P. Pelliconi and J. Sonner, The influence functional in open holography: entanglement and Rényi entropies, JHEP 06 (2024) 185 [arXiv:2310.13047] [INSPIRE].
A. Karch, M. Wang and M. Youssef, AdS Higgs mechanism from double trace deformed CFT, JHEP 02 (2024) 044 [arXiv:2311.10135] [INSPIRE].
S. Kehrein, Page curve entanglement dynamics in an analytically solvable model, Phys. Rev. B 109 (2024) 224308 [arXiv:2311.18045] [INSPIRE].
E. Witten, Multitrace operators, boundary conditions, and AdS / CFT correspondence, hep-th/0112258 [INSPIRE].
G. Compère, A. Fiorucci and R. Ruzziconi, The Λ-BMS4 group of dS4 and new boundary conditions for AdS4, Class. Quant. Grav. 36 (2019) 195017 [Erratum ibid. 38 (2021) 229501] [arXiv:1905.00971] [INSPIRE].
G. Compère, A. Fiorucci and R. Ruzziconi, The Λ-BMS4 charge algebra, JHEP 10 (2020) 205 [arXiv:2004.10769] [INSPIRE].
A. Fiorucci and R. Ruzziconi, Charge algebra in Al(A)dSn spacetimes, JHEP 05 (2021) 210 [arXiv:2011.02002] [INSPIRE].
W. Donnelly and L. Freidel, Local subsystems in gauge theory and gravity, JHEP 09 (2016) 102 [arXiv:1601.04744] [INSPIRE].
A.J. Speranza, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP 02 (2018) 021 [arXiv:1706.05061] [INSPIRE].
J. Kirklin, Subregions, Minimal Surfaces, and Entropy in Semiclassical Gravity, arXiv:1805.12145 [INSPIRE].
J. Camps, Superselection Sectors of Gravitational Subregions, JHEP 01 (2019) 182 [arXiv:1810.01802] [INSPIRE].
J. Camps, The Parts of the Gravitational Field, arXiv:1905.10121 [INSPIRE].
E. Bahiru et al., State-dressed local operators in the AdS/CFT correspondence, Phys. Rev. D 108 (2023) 086035 [arXiv:2209.06845] [INSPIRE].
E. Bahiru et al., Holography and localization of information in quantum gravity, JHEP 05 (2024) 261 [arXiv:2301.08753] [INSPIRE].
K. Jensen, J. Sorce and A.J. Speranza, Generalized entropy for general subregions in quantum gravity, JHEP 12 (2023) 020 [arXiv:2306.01837] [INSPIRE].
Å. Folkestad, Subregion independence in gravity, JHEP 05 (2024) 300 [arXiv:2311.09403] [INSPIRE].
V. Balasubramanian and C. Cummings, The entropy of finite gravitating regions, arXiv:2312.08434 [INSPIRE].
O. Aharony, M. Berkooz and E. Silverstein, Multiple trace operators and nonlocal string theories, JHEP 08 (2001) 006 [hep-th/0105309] [INSPIRE].
M. Berkooz, A. Sever and A. Shomer, ‘Double trace’ deformations, boundary conditions and space-time singularities, JHEP 05 (2002) 034 [hep-th/0112264] [INSPIRE].
V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].
I.R. Klebanov and E. Witten, AdS / CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
S. Rychkov, EPFL Lectures on Conformal Field Theory in D >= 3 Dimensions, arXiv:1601.05000 [https://doi.org/10.1007/978-3-319-43626-5] [INSPIRE].
S. Minwalla, Restrictions imposed by superconformal invariance on quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 783 [hep-th/9712074] [INSPIRE].
S. Fichet, On holography in general background and the boundary effective action from AdS to dS, JHEP 07 (2022) 113 [arXiv:2112.00746] [INSPIRE].
K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].
P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].
S. Bintanja, B. Freivogel and A. Rolph, Tunneling to Holographic Traversable Wormholes, SciPost Phys. 16 (2024) 066 [arXiv:2308.00871] [INSPIRE].
O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP 10 (2005) 097 [hep-th/0504177] [INSPIRE].
P.H. Ginsparg, Applied conformal field theory, in the proceedings of the Les Houches Summer School in Theoretical Physics: Fields, Strings, Critical Phenomena, Les Houches, France, June 28 – August 05 (1988) [hep-th/9108028] [INSPIRE].
M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, U.S.A. (1995).
W.A. Bardeen and B. Zumino, Consistent and Covariant Anomalies in Gauge and Gravitational Theories, Nucl. Phys. B 244 (1984) 421 [INSPIRE].
T. Damour and I.I. Kogan, Effective Lagrangians and universality classes of nonlinear bigravity, Phys. Rev. D 66 (2002) 104024 [hep-th/0206042] [INSPIRE].
N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys. 305 (2003) 96 [hep-th/0210184] [INSPIRE].
E. Babichev, C. Deffayet and R. Ziour, The Vainshtein mechanism in the Decoupling Limit of massive gravity, JHEP 05 (2009) 098 [arXiv:0901.0393] [INSPIRE].
E. Babichev and C. Deffayet, An introduction to the Vainshtein mechanism, Class. Quant. Grav. 30 (2013) 184001 [arXiv:1304.7240] [INSPIRE].
H. van Dam and M.J.G. Veltman, Massive and massless Yang-Mills and gravitational fields, Nucl. Phys. B 22 (1970) 397 [INSPIRE].
J.F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].
M. Porrati, Higgs phenomenon for 4-D gravity in anti-de Sitter space, JHEP 04 (2002) 058 [hep-th/0112166] [INSPIRE].
J. Preskill, Gauge anomalies in an effective field theory, Annals Phys. 210 (1991) 323 [INSPIRE].
H. Geng et al., TBA, to appear (2023).
M.J. Duff, J.T. Liu and H. Sati, Complementarity of the Maldacena and Karch-Randall pictures, Phys. Rev. D 69 (2004) 085012 [hep-th/0207003] [INSPIRE].
O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089] [INSPIRE].
L. Apolo and M. Porrati, On AdS/CFT without Massless Gravitons, Phys. Lett. B 714 (2012) 309 [arXiv:1205.4956] [INSPIRE].
H. Geng et al., Information Transfer with a Gravitating Bath, SciPost Phys. 10 (2021) 103 [arXiv:2012.04671] [INSPIRE].
H. Geng et al., Inconsistency of islands in theories with long-range gravity, JHEP 01 (2022) 182 [arXiv:2107.03390] [INSPIRE].
H. Geng, Revisiting Recent Progress in the Karch-Randall Braneworld, arXiv:2306.15671 [INSPIRE].
W. Donnelly and A.C. Wall, Entanglement entropy of electromagnetic edge modes, Phys. Rev. Lett. 114 (2015) 111603 [arXiv:1412.1895] [INSPIRE].
J. Lin, Entanglement entropy in Jackiw-Teitelboim Gravity, arXiv:1807.06575 [INSPIRE].
D.L. Jafferis and D.K. Kolchmeyer, Entanglement Entropy in Jackiw-Teitelboim Gravity, arXiv:1911.10663 [INSPIRE].
T.G. Mertens, J. Simón and G. Wong, A proposal for 3d quantum gravity and its bulk factorization, JHEP 06 (2023) 134 [arXiv:2210.14196] [INSPIRE].
G. Wong, A note on the bulk interpretation of the quantum extremal surface formula, JHEP 04 (2024) 024 [arXiv:2212.03193] [INSPIRE].
W.Z. Chua and Y. Jiang, Hartle-Hawking state and its factorization in 3d gravity, JHEP 03 (2024) 135 [arXiv:2309.05126] [INSPIRE].
P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].
E. Kiritsis and V. Niarchos, Josephson Junctions and AdS/CFT Networks, JHEP 07 (2011) 112 [Erratum ibid. 10 (2011) 095] [arXiv:1105.6100] [INSPIRE].
M. Blake and D. Tong, Universal Resistivity from Holographic Massive Gravity, Phys. Rev. D 88 (2013) 106004 [arXiv:1308.4970] [INSPIRE].
A. Adams, D.A. Roberts and O. Saremi, Hawking-Page transition in holographic massive gravity, Phys. Rev. D 91 (2015) 046003 [arXiv:1408.6560] [INSPIRE].
X. Huang, S. Sachdev and A. Lucas, Disordered Quantum Critical Fixed Points from Holography, Phys. Rev. Lett. 131 (2023) 141601 [arXiv:2306.03130] [INSPIRE].
D. Grumiller, R. Ruzziconi and C. Zwikel, One-loop partition function of gravity with leaky boundary conditions, JHEP 02 (2024) 080 [arXiv:2312.06744] [INSPIRE].
V.A. Rubakov and P.G. Tinyakov, Infrared-modified gravities and massive gravitons, Phys. Usp. 51 (2008) 759 [arXiv:0802.4379] [INSPIRE].
K. Hinterbichler, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys. 84 (2012) 671 [arXiv:1105.3735] [INSPIRE].
C. de Rham, Massive Gravity, Living Rev. Rel. 17 (2014) 7 [arXiv:1401.4173] [INSPIRE].
Acknowledgments
We are grateful to Amr Ahmadain, Luis Apolo, Jan de Boer, Sylvain Fichet, A. Liam Fitzpatrick, Eduardo Gonzalo, Brianna Grado-White, Indranil Halder, Matthew Heydeman, Yangrui Hu, Yikun Jiang, Juan Maldacena, Martin Sasieta, Brian Swingle, Gabriel Wong for relevant discussions. We thank Daniel Grumiller, Andreas Karch, Suvrat Raju, Lisa Randall, Romain Ruzziconi and Céline Zwikel for discussions and relevant collaborations on [73]. HG would like to thank the organizers of “Strings 2023” conference at the Perimeter Institute for Theoretical Physics where the final stage of this work is done. The work of HG is supported by the grant (272268) from the Moore Foundation “Fundamental Physics from Astronomy and Cosmology” and a grant from Physics Department at Harvard University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2311.13633
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Geng, H. Open AdS/CFT via a double-trace deformation. J. High Energ. Phys. 2024, 12 (2024). https://doi.org/10.1007/JHEP09(2024)012
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP09(2024)012