Abstract
Axion particles can form macroscopic condensates, whose size can be galactic in scale for models with very small axion masses m ∼ 10−22 eV, and which are sometimes referred to under the name of Fuzzy Dark Matter. Many analyses of these condensates are done in the non-interacting limit, due to the weakness of the self-interaction coupling of axions. We investigate here how certain results change upon inclusion of these interactions, finding a decreased maximum mass and a modified mass-radius relationship. Further, these condensates are, in general, unstable to decay through number-changing interactions. We analyze the stability of galaxy-sized condensates of axion-like particles, and sketch the parameter space of stable configurations as a function of a binding energy parameter. We find a strong lower bound on the size of Fuzzy Dark Matter condensates which are stable to decay, with lifetimes longer than the age of the universe.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
M. Dine, W. Fischler and M. Srednicki, A simple solution to the strong CP problem with a harmless axion, Phys. Lett. 104B (1981) 199 [INSPIRE].
A.R. Zhitnitsky, On possible suppression of the axion hadron interactions, (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [Yad. Fiz. 31 (1980) 497] [INSPIRE].
J.E. Kim, Weak interaction singlet and strong CP invariance, Phys. Rev. Lett. 43 (1979) 103 [INSPIRE].
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Can confinement ensure natural CP invariance of strong interactions?, Nucl. Phys. B 166 (1980) 493 [INSPIRE].
A. Arvanitaki et al., String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
K. Choi and J.E. Kim, Compactification and axions in E 8 × E 8 -prime superstring models, Phys. Lett. 165B (1985) 71 [INSPIRE].
T. Banks, M. Dine, P.J. Fox and E. Gorbatov, On the possibility of large axion decay constants, JCAP 06 (2003) 001 [hep-th/0303252] [INSPIRE].
J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the invisible axion, Phys. Lett. 120B (1983) 127 [INSPIRE].
L.F. Abbott and P. Sikivie, A cosmological bound on the invisible axion, Phys. Lett. 120B (1983) 133 [INSPIRE].
S. Davidson and T. Schwetz, Rotating drops of axion dark matter, Phys. Rev. D 93 (2016) 123509 [arXiv:1603.04249] [INSPIRE].
M. Dine and W. Fischler, The not so harmless axion, Phys. Lett. 120B (1983) 137 [INSPIRE].
R. Holman, G. Lazarides and Q. Shafi, Axions and the dark matter of the universe, Phys. Rev. D 27 (1983) 995 [INSPIRE].
P. Sikivie, Axion cosmology, Lect. Notes Phys. 741 (2008) 19 [astro-ph/0610440] [INSPIRE].
P. Sikivie and Q. Yang, Bose-Einstein condensation of dark matter axions, Phys. Rev. Lett. 103 (2009) 111301 [arXiv:0901.1106] [INSPIRE].
L. Hui, J.P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as cosmological dark matter, Phys. Rev. D 95 (2017) 043541 [arXiv:1610.08297] [INSPIRE].
E.W. Kolb and I.I. Tkachev, Axion miniclusters and Bose stars, Phys. Rev. Lett. 71 (1993) 3051 [hep-ph/9303313] [INSPIRE].
A. Iwazaki, Axionic boson stars in magnetized conducting media, Phys. Rev. D 60 (1999) 025001 [hep-ph/9901396] [INSPIRE].
J. Barranco, A.C. Monteverde and D. Delepine, Can the dark matter halo be a collisionless ensemble of axion stars?, Phys. Rev. D 87 (2013) 103011 [arXiv:1212.2254] [INSPIRE].
I.I. Tkachev, Fast radio bursts and axion miniclusters, JETP Lett. 101 (2015) 1 [arXiv:1411.3900] [INSPIRE].
J. Eby, P. Suranyi, C. Vaz and L.C.R. Wijewardhana, Axion stars in the infrared limit, JHEP 03 (2015) 080 [Erratum ibid. 11 (2016) 134] [arXiv:1412.3430] [INSPIRE].
A.H. Guth, M.P. Hertzberg and C. Prescod-WEinstein, Do dark matter axions form a condensate with long-range correlation?, Phys. Rev. D 92 (2015) 103513 [arXiv:1412.5930] [INSPIRE].
J. Barranco and A. Bernal, Self-gravitating system made of axions, Phys. Rev. D 83 (2011) 043525 [arXiv:1001.1769] [INSPIRE].
E. Braaten, A. Mohapatra and H. Zhang, Dense axion stars, Phys. Rev. Lett. 117 (2016) 121801 [arXiv:1512.00108] [INSPIRE].
M.Y. Khlopov, B.A. Malomed and Y.B. Zeldovich, Gravitational instability of scalar field and primordial black holes, Mon. Not. Roy. Astr. Soc. 215 (1985) 575.
Z.G. Berezhiani, A.S. Sakharov and M. Yu. Khlopov, Primordial background of cosmological axions, Sov. J. Nucl. Phys. 55 (1992) 1063 [Yad. Fiz. 55 (1992) 1918] [INSPIRE].
A.S. Sakharov and M. Yu. Khlopov, The nonhomogeneity problem for the primordial axion field, Phys. Atom. Nucl. 57 (1994) 485 [Yad. Fiz. 57 (1994) 514] [INSPIRE].
A.S. Sakharov, D.D. Sokoloff and M. Yu. Khlopov, Large scale modulation of the distribution of coherent oscillations of a primordial axion field in the universe, Phys. Atom. Nucl. 59 (1996) 1005 [Yad. Fiz. 59 (1996) 1050] [INSPIRE].
M.Y. Khlopov, A.S. Sakharov and D.D. Sokoloff, The nonlinear modulation of the density distribution in standard axionic CDM and its cosmological impact, Nucl. Phys. Proc. Suppl. B 72 (1999) 105.
I.I. Tkachev, On the possibility of Bose star formation, Phys. Lett. B 261 (1991) 289 [INSPIRE].
J. Eby, P. Suranyi and L.C.R. Wijewardhana, The lifetime of axion stars, Mod. Phys. Lett. A 31 (2016) 1650090 [arXiv:1512.01709] [INSPIRE].
E. Braaten, A. Mohapatra and H. Zhang, Emission of photons and relativistic axions from axion stars, Phys. Rev. D 96 (2017) 031901 [arXiv:1609.05182] [INSPIRE].
E. Witten, Large-N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].
P. Di Vecchia and G. Veneziano, Chiral dynamics in the large-N limit, Nucl. Phys. B 171 (1980) 253 [INSPIRE].
G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].
R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the concept of an equation of state, Phys. Rev. 187 (1969) 1767 [INSPIRE].
E. Braaten, H.-W. Hammer and G.P. Lepage, Open effective field theories from highly inelastic reactions, PoS(ICHEP2016)350 [arXiv:1612.08047] [INSPIRE].
W. Hu, R. Barkana and A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett. 85 (2000) 1158 [astro-ph/0003365] [INSPIRE].
M.S. Turner, Coherent scalar field oscillations in an expanding universe, Phys. Rev. D 28 (1983) 1243 [INSPIRE].
W.H. Press, B.S. Ryden and D.N. Spergel, Single mechanism for generating large scale structure and providing dark missing matter, Phys. Rev. Lett. 64 (1990) 1084 [INSPIRE].
S.-J. Sin, Late time cosmological phase transition and galactic halo as Bose liquid, Phys. Rev. D 50 (1994) 3650 [hep-ph/9205208] [INSPIRE].
J. Goodman, Repulsive dark matter, New Astron. 5 (2000) 103 [astro-ph/0003018] [INSPIRE].
P.J.E. Peebles, Fluid dark matter, Astrophys. J. 534 (2000) L127 [astro-ph/0002495] [INSPIRE].
L. Amendola and R. Barbieri, Dark matter from an ultra-light pseudo-Goldsone-boson, Phys. Lett. B 642 (2006) 192 [hep-ph/0509257] [INSPIRE].
B. Li, T. Rindler-Daller and P.R. Shapiro, Cosmological constraints on Bose-Einstein-condensed scalar field dark matter, Phys. Rev. D 89 (2014) 083536 [arXiv:1310.6061] [INSPIRE].
H.-Y. Schive, T. Chiueh and T. Broadhurst, Cosmic structure as the quantum interference of a coherent dark wave, Nature Phys. 10 (2014) 496 [arXiv:1406.6586] [INSPIRE].
D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
J.-W. Lee, Brief history of ultra-light scalar dark matter models, arXiv:1704.05057 [INSPIRE].
V. Sahni and L.-M. Wang, A new cosmological model of quintessence and dark matter, Phys. Rev. D 62 (2000) 103517 [astro-ph/9910097] [INSPIRE].
M. Alcubierre et al., Galactic collapse of scalar field dark matter, Class. Quant. Grav. 19 (2002) 5017 [gr-qc/0110102] [INSPIRE].
A. Maselli, P. Pnigouras, N.G. Nielsen, C. Kouvaris and K.D. Kokkotas, Dark stars: gravitational and electromagnetic observables, Phys. Rev. D 96 (2017) 023005 [arXiv:1704.07286] [INSPIRE].
J.-w. Lee and I.-g. Koh, Galactic halos as boson stars, Phys. Rev. D 53 (1996) 2236 [hep-ph/9507385] [INSPIRE].
P.-H. Chavanis, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: I. Analytical results, Phys. Rev. D 84 (2011) 043531 [arXiv:1103.2050] [INSPIRE].
P.H. Chavanis and L. Delfini, Mass-radius relation of Newtonian self-gravitating Bose-Einstein condensates with short-range interactions: II. Numerical results, Phys. Rev. D 84 (2011) 043532 [arXiv:1103.2054] [INSPIRE].
J. Eby, C. Kouvaris, N.G. Nielsen and L.C.R. Wijewardhana, Boson stars from self-interacting dark matter, JHEP 02 (2016) 028 [arXiv:1511.04474] [INSPIRE].
F.S. Guzman and L.A. Urena-Lopez, Evolution of the Schrödinger-Newton system for a selfgravitating scalar field, Phys. Rev. D 69 (2004) 124033 [gr-qc/0404014] [INSPIRE].
F.S. Guzman and L.A. Urena-Lopez, Gravitational cooling of self-gravitating Bose-Condensates, Astrophys. J. 645 (2006) 814 [astro-ph/0603613] [INSPIRE].
A. Bernal and F.S. Guzman, Scalar field dark matter: non-spherical collapse and late time behavior, Phys. Rev. D 74 (2006) 063504 [astro-ph/0608523] [INSPIRE].
A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD axion with black holes and gravitational waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
A. Arvanitaki, M. Baryakhtar, S. Dimopoulos, S. Dubovsky and R. Lasenby, Black hole mergers and the QCD axion at advanced LIGO, Phys. Rev. D 95 (2017) 043001 [arXiv:1604.03958] [INSPIRE].
J. Eby, M. Leembruggen, P. Suranyi and L.C.R. Wijewardhana, Collapse of axion stars, JHEP 12 (2016) 066 [arXiv:1608.06911] [INSPIRE].
V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton and G.D. Becker, First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].
A. Diez-Tejedor and D.J.E. Marsh, Cosmological production of ultralight dark matter axions, arXiv:1702.02116 [INSPIRE].
H.T.C. Stoof, Macroscopic quantum tunneling of a bose condensate, J. Stat. Phys. 87 (1997) 1353 [cond-mat/9601150].
C.A. Sackett, H.T.C. Stoof and R.G. Hulet, Growth and collapse of a Bose condensate with attractive interactions, Phys. Rev. Lett. 80 (1998) 2031 [cond-mat/9801014].
T. Harko, Gravitational collapse of Bose-Einstein condensate dark matter halos, Phys. Rev. D 89 (2014) 084040 [arXiv:1403.3358] [INSPIRE].
P.-H. Chavanis, Collapse of a self-gravitating Bose-Einstein condensate with attractive self-interaction, Phys. Rev. D 94 (2016) 083007 [arXiv:1604.05904] [INSPIRE].
D.G. Levkov, A.G. Panin and I.I. Tkachev, Relativistic axions from collapsing Bose stars, Phys. Rev. Lett. 118 (2017) 011301 [arXiv:1609.03611] [INSPIRE].
T. Helfer, D.J.E. Marsh, K. Clough, M. Fairbairn, E.A. Lim and R. Becerril, Black hole formation from axion stars, JCAP 03 (2017) 055 [arXiv:1609.04724] [INSPIRE].
J. Eby, M. Leembruggen, P. Suranyi and L.C.R. Wijewardhana, QCD axion star collapse with the chiral potential, JHEP 06 (2017) 014 [arXiv:1702.05504] [INSPIRE].
J. Eby, M. Leembruggen, J. Leeney, P. Suranyi and L.C.R. Wijewardhana, Collisions of dark matter axion stars with astrophysical sources, JHEP 04 (2017) 099 [arXiv:1701.01476] [INSPIRE].
K. Mukaida, M. Takimoto and M. Yamada, On longevity of I-ball/oscillon, JHEP 03 (2017) 122 [arXiv:1612.07750] [INSPIRE].
M. Gell-Mann, The interpretation of the new particles as displaced charge multiplets, Nuovo Cim. 4 (1956) 848 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1705.05385
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Eby, J., Ma, M., Suranyi, P. et al. Decay of ultralight axion condensates. J. High Energ. Phys. 2018, 66 (2018). https://doi.org/10.1007/JHEP01(2018)066
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP01(2018)066