[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Varying Newton’s constant: a cure for gravitational maladies?

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Correction to this article was published on 20 December 2024

This article has been updated

Abstract

We show that a slowly varying Newton’s constant, consistent with existing bounds, can potentially explain a host of observations pertaining to gravitational effects or phenomena across distances spanning from planetary to the cosmological, relying neither on the existence of dark matter or (and) dark energy, nor on any expected high proportions of either of them in the Universe. It may also have implications at very short distances or quantum gravity scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data or the data will not be deposited. Observational datasets used for the statistical estimation are retrieved from well-known references, duly cited in this paper.

Change history

  • 22 December 2024

    The original online version of this article was revised: In this article in PDF file the affiliations of the two authors were superimposed on one another making them unreadable. The original article has been corrected.

  • 20 December 2024

    A Correction to this paper has been published: https://doi.org/10.1140/epjp/s13360-024-05927-0

Notes

  1. At the level of the cosmological density perturbations though, the quasi-Newtonian formalism is expected to differ significantly from the relativistic one. Nevertheless, while such a perturbative study, in an appropriate covariant formulation for the G-variation, is being carried out in some ongoing works [41, 42], we keep it beyond the scope of this paper.

References

  1. D.R. Mikkelsen, M.J. Newman, Phys. Rev. D 16, 919 (1977)

    Article  ADS  Google Scholar 

  2. C. Sivaram, K. Arun, L. Rebecca, J. Astrophys. Astron. 41(1), 4 (2020)

    Article  ADS  Google Scholar 

  3. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.H. Dicke, Phys. Rev. 125, 2163 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. Fujii, K. Maeda, The Scalar-Tensor Theory of Gravitation, Cambridge University Press, United Kingdom, Cambridge Monographs on Mathematical Physics (2003)

    Book  Google Scholar 

  6. V. Faraoni, Cosmology in Scalar-Tensor Gravity, Kluwer Academic Publishers (2004)

  7. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451 (2010)

    Article  ADS  Google Scholar 

  8. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Phys. Rept. 513, 1 (2012)

    Article  ADS  Google Scholar 

  9. E. Papantonopoulos, Lecture Notes in Physics, Springer, Switzerland (2015)

    Google Scholar 

  10. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rept. 692, 1 (2017)

    Article  ADS  Google Scholar 

  11. J.D. Bekenstein, Phys. Rev. D 70(8), 083509 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  12. N.E. Mavromatos, M. Sakellariadou, M.F. Yusaf, Phys. Rev. D 79(8), 081301 (2009)

    Article  ADS  Google Scholar 

  13. J.D. Bekenstein, R.H. Sanders, Mon. Not. Roy. Astron. Soc. 421, L59 (2012)

    Article  ADS  Google Scholar 

  14. M. Milgrom, Astrophys. J. 270, 365 (1983)

    Article  ADS  Google Scholar 

  15. M. Milgrom, R.H. Sanders, Astrophys J. 599(1), 25 (2003)

    Article  ADS  Google Scholar 

  16. J.D. Bekenstein, Phys. Rev. D 70, 83509 (2004)

    Article  ADS  Google Scholar 

  17. F.W. Hehl, B. Mashhoon, Phys. Rev. D 79, 064028 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. H.-J. Blome, C. Chicone, F.W. Hehl, B. Mashhoon, Phys. Rev. D 81, 065020 (2010)

    Article  ADS  Google Scholar 

  19. B. Mashhoon, Symmetry 14(10), 2116 (2022)

    Article  ADS  Google Scholar 

  20. G. Nash, Int. J. Mod. Phys. D 32(06), 2350031 (2023)

    Article  ADS  Google Scholar 

  21. M. Reuter, H. Weyer, Int. J. Mod. Phys. D 15, 2011 (2006)

    Article  ADS  Google Scholar 

  22. I.L. Shapiro, J. Solà, H. Štefančić, JCAP 0501, 012 (2005)

    Article  ADS  Google Scholar 

  23. B.L. Giacchini, T. de Paula Netto and I.L. Shapiro, JHEP 10 (2020) 011

  24. B.L. Giacchini, T. de Paula Netto and I.L. Shapiro, Phys. Rev. D 102 (2020) 106006

  25. D.C. Rodrigues, P.S. Letelier, I.L. Shapiro, JCAP 1004, 020 (2010)

    Article  ADS  Google Scholar 

  26. D.A.R. Dalvit, F.D. Mazzitelli, Phys. Rev. D 56, 7779 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  27. T. de Paula Netto, L. Modesto, I.L. Shapiro, Eur. Phys. J. C 82 (2022) 2, 160

  28. N.R. Bertini, W.S. Hipólito-Ricaldi, F. de Melo-Santos, D.C. Rodrigues, Eur. Phys. J. C 80, 479 (2020)

    Article  ADS  Google Scholar 

  29. J. Solà, H. Štefančić, Phys. Lett. B 624, 147 (2005)

    Article  ADS  Google Scholar 

  30. P.D. Alvarez, B. Koch, C. Laporte, Á. Rincón, JCAP 06, 019 (2021)

    Article  ADS  Google Scholar 

  31. N.R. Bertini, D.C. Rodrigues, I.L. Shapiro, Phys. Dark Univ. 45, 101502 (2024)

    Article  Google Scholar 

  32. S. Das, S. Sur, Phys. Open 15, 100150 (2023)

    Article  Google Scholar 

  33. D. Clowe, A. Gonzalez, M. Markevitch, Astrophys. J. 604, 596 (2004)

    Article  ADS  Google Scholar 

  34. D. Clowe, A. Gonzalez, M. Markevitch, Astrophys. J. 648, L109 (2004)

    Article  ADS  Google Scholar 

  35. J. Binney, S. Tremaine, Galactic Dynamics, Second Edition, Princeton (2008)

  36. A. Yahalom, Symmetry 12, 1693 (2020)

    Article  ADS  Google Scholar 

  37. R. D’Inverno, Introducing Einstein’s Relativity, Clarendon Press, Oxford (1992), Chapter 22, pp. 310-312

  38. A. Liddle, An Introduction to Modern Cosmology, Second Edition, Wiley (2003), Chapter 3, pp. 17-24

  39. A. Rai Choudhuri, Astrophysics for physicists, Cambridge (2010), Chapter 10, pp. 309-313

  40. S. Weinberg, Cosmology, Oxford (2008)

  41. S. Das, S. Sur, How much dark matter do we really need?, in preparation

  42. S. Sur, R. Aggrawal, S. Das, Cosmological consequences of a varying Newton's constant from a nonlocal gravitational standpoint, in preparation

  43. S. Das, S. Sur, Phys. Dark Univ. 42, 101331 (2023)

    Article  Google Scholar 

  44. D. Scolnic et al., Astrophys. J. 938, 113 (2022)

    Article  ADS  Google Scholar 

  45. D. Brout et al., Astrophys. J. 938, 110 (2022)

    Article  ADS  Google Scholar 

  46. A.G. Riess et al., Astrophys. J. Lett. 934(1), L7 (2022)

    Article  ADS  Google Scholar 

  47. The Pantheon+SH0ES data release plugin with cosmosys chains and likelihoods, is available at https://github.com/PantheonPlusSH0ES

  48. M. Moresco et al., JCAP 08, 006 (2012)

    Article  ADS  Google Scholar 

  49. M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, JCAP 05, 014 (2016)

    Article  ADS  Google Scholar 

  50. N. Borghi, M. Moresco, A. Cimatti, Astrophys. J. Lett. 928 (2022) L4

  51. E. Tomasetti et al., Astron. Astrophys. 679, A96 (2023)

    Article  Google Scholar 

  52. A.G. Riess et al., Astrophys. J. 853, 126 (2018)

    Article  ADS  Google Scholar 

  53. E. Gaztañaga, A. Cabrè, L. Hui, Mon. Not. Roy. Astron. Soc. 399, 1663 (2009)

    Article  ADS  Google Scholar 

  54. C. Blake et al., Mon. Not. Roy. Astron. Soc. 425, 405 (2012)

    Article  ADS  Google Scholar 

  55. G.-B. Zhao et al., Mon. Not. Roy. Astron. Soc. 482, 3497 (2019)

    Article  ADS  Google Scholar 

  56. A. Font-Ribera et al., JCAP 2014, 027 (2014)

    Article  MathSciNet  Google Scholar 

  57. T. Delubac et al., Astron. Astrophys. 574, A59 (2015)

    Article  Google Scholar 

  58. C. Dong et al., Mon. Not. Roy. Astron. Soc. 514, 5493 (2022)

    Article  ADS  Google Scholar 

  59. R. Monjo, Astrophys. J. 967, 66 (2024)

    Article  ADS  Google Scholar 

  60. H. Akaike, IEEE Trans. Autom. Control 19(6), 716 (1974)

    Article  ADS  Google Scholar 

  61. A.R. Liddle, Mon. Not. R. Astron. Soc. 377, L74 (2007)

    Article  ADS  Google Scholar 

  62. J. Solà, A. Gomez-Valent, J. de Cruz Pérez, Astrophys. J. 836 (2017) 1, 43

  63. F. Arevalo, A. Cid, J. Moya, Eur. Phys. J. C 77, 565 (2017)

    Article  ADS  Google Scholar 

  64. S. Sur, A.S. Bhatia, JCAP 1707, 039 (2017)

    Article  ADS  Google Scholar 

  65. K. Pardo, D.N. Spergel, Phys. Rev. Lett. 125(21), 211101 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  66. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observations, Cambridge University Press, United Kingdom (2010)

    Book  Google Scholar 

  67. T. Westphal, H. Hepach, J. Pfaff, M. Aspelmeyer, Nature 591, 225 (2021)

    Article  ADS  Google Scholar 

  68. S. Das, M. Fridman, S. Sur, Asymptotic freedom in Gravity, communicated

  69. S. Das, M. Fridman, S. Sur, A singularity free classical theory of gravity, in preparation

  70. L. Iorio, M.L. Ruggiero, Schol. Res. Exch. 2008, 968393 (2008)

    ADS  Google Scholar 

  71. X.-M. Deng, Y. Xie, Ann. Phys. 361, 62 (2015)

    Article  ADS  Google Scholar 

  72. S. Rahvar, B. Mashhoon, Phys. Rev. D 89, 104011 (2014)

    Article  ADS  Google Scholar 

  73. D. Bini, B. Mashhoon, Phys. Rev. D 90(2), 024030 (2014)

    Article  ADS  Google Scholar 

  74. M. Roshan, B. Mashhoon, Astrophys. J. 934(1), 9 (2022)

    Article  ADS  Google Scholar 

  75. J. Tabatabaei, S. Baghram, B. Mashhoon, Mon. Not. Roy. Astron. Soc. 530, 795 (2024)

    Article  ADS  Google Scholar 

  76. J. Tabatabaei, A. Banihashemi, S. Baghram, B. Mashhoon, Int. J. Mod. Phys. D 32(14), 2342009 (2023)

    Article  ADS  Google Scholar 

  77. J. Tabatabaei, A. Banihashemi, S. Baghram, B. Mashhoon, Astrophys. J. 965(2), 116 (2024)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. SS acknowledges financial support from the Faculty Research Programme Grant—IoE, University of Delhi (Ref.No./ IoE/ 2024-25/12/FRP). The authors are grateful to the anonymous reviewer of the paper, for making several important suggestions and bringing in notice a wealth of valued references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Sur.

Additional information

The original online version of this article was revised: In this article in PDF file the affiliations of the two authors were superimposed on one another making them unreadable. The original article has been corrected.

Appendix: Covariant embedding of the varying G—an illustration

Appendix: Covariant embedding of the varying G—an illustration

Following refs. [17,18,19], consider the nonlocal extension of the teleparallel equivalent of general relativity (TEGR), which we shall refer henceforth as the nonlocal gravity (NLG) theory. The formalism is essentially developed in analogy with the nonlocal electrodynamics of media, wherein the constitutive relations between the electromagnetic excitation \(H^{\alpha \beta } = (\vec {\pmb D},\vec {\pmb H})\) and the field strength \(F_{\alpha \beta } = (\vec {\pmb E},\vec {\pmb B})\) depend on the evolution history and are hence nonlocal:

$$\begin{aligned} H^{\alpha \beta } =\, \sqrt{-g} \,g^{\alpha \gamma } g^{\beta \delta } F_{\gamma \delta } (x) +\, \int d^4 x' \chi ^{\alpha \beta \gamma \delta } (x,x')\, F_{\gamma \delta } (x') \,, \end{aligned}$$
(35)

where g denotes the determinant of the metric tensor \(g_{\alpha \beta }\) and \(\chi ^{\alpha \beta \gamma \delta }\) is a kernel which determines the degree of nonlocality of the electromagnetic configuration.

Teleparallelism, on the other hand, concerns preferred orthonormal tetrad frames, such that

$$\begin{aligned} g_{\mu \nu } (x) =\, \eta _{\hat{\alpha }\hat{\beta }} \, e_\mu ^{~\hat{\alpha }}(x) \, e_\nu ^{~\hat{\beta }}(x) \,, \end{aligned}$$
(36)

where \(e_\mu ^{~\hat{\alpha }}\) denotes the tetrad field, and \(\eta _{\hat{\alpha }\hat{\beta }}\) is the Minkowski metric of the local tangent space, with \(\hat{\alpha },\hat{\beta },\dots \) being the corresponding coordinate labels, different from \(\alpha ,\beta ,\mu ,\nu ,\dots \), which are the usual curved space coordinate labels. Defining an asymmetric affine connection, known as the Weitzenböck connection

$$\begin{aligned} \Gamma ^\sigma _{\mu \nu } =\, e^\sigma _{~\hat{\alpha }} \, \partial _\mu e_\nu ^{~\hat{\beta }} \,, \end{aligned}$$
(37)

one perceives curvature-freeness, i.e. the space-time is parallelizable, in accord with \(\nabla _\nu e_\mu ^{~\hat{\alpha }} = 0\), and as such, the metricity condition \(\nabla _\nu g_{\alpha \beta } = 0\), where \(\nabla _\nu \) denotes the covariant derivative in terms of \(\Gamma ^\sigma _{\mu \nu }\) given by eq. (37). The space-time nonetheless admits a nonzero torsion

$$\begin{aligned} C_{\mu \nu }^{~~\sigma } := \, 2 \,\Gamma ^\sigma _{[\mu \nu ]} =\, 2 \,e^\sigma _{~\hat{\alpha }} \,\partial _{[\mu } \,e_{\nu ]}^{~\hat{\alpha }} \,, \end{aligned}$$
(38)

which is nothing but the gravitational field strength, similar to the field strength \(F_{\alpha \beta } = 2 \partial _{[\alpha } A_{\beta ]}\) in electrodynamics (with \(A_\beta \) being the corresponding field potential). On the whole, the teleparallel gravitational formulation is that of a translational gauge theory—an Abelian one, analogous to electrodynamics. Such a formulation is in fact equivalent to general relativity (GR) in the sense that it leads to the same field equations, with the gravitational gauge field strength given by the Einstein tensor expressed in terms of the tetrads and the Weitzenböck connection as

$$\begin{aligned} G_{\mu \nu }= \, \frac{\kappa ^2}{\sqrt{-g}} \bigg [e_\mu ^{~\hat{\gamma }} \,g_{\nu \alpha } \,\partial _\beta \mathcal {H}^{\alpha \beta }_{~~~~\hat{\gamma }} \, - \left(C_\mu ^{~\alpha \beta } \mathcal {H}_{\nu \alpha \beta } - \frac{1}{4} C^{\alpha \beta \sigma } \mathcal {H}_{\alpha \beta \sigma }\right)\bigg ] , \end{aligned}$$
(39)

where \(\kappa ^2 = 8 \pi G\) (with G being the usual Newton’s constant), and

$$\begin{aligned} & \mathcal {H}_{\mu \nu \sigma } =\, \frac{\sqrt{-g}}{\kappa ^2} \mathcal {C}_{\mu \nu \sigma } , \end{aligned}$$
(40)
$$\begin{aligned} & \mathcal {C}_{\mu \nu \sigma } =\, 2 C_{[\mu } \,g_{\nu ]\sigma } -\, C_{\mu [\nu \sigma ]} - \frac{1}{2} C_{\nu \sigma \mu } , \end{aligned}$$
(41)
$$\begin{aligned} & C_\mu \equiv \, C^\alpha _{~\mu \alpha }~:~\text {torsion trace vector.} \end{aligned}$$
(42)

In analogy with the electrodynamics of media, Eq. (40) is generally considered as a constitutive relation, with \(\mathcal {H}_{\mu \nu \sigma }\) treated as the gravitational excitation from the gauge theoretic perspective. The nonlocal generalization to this, proposed in a series of papers [17,18,19], is an augmentation of the modified torsion tensor \(\mathcal {C}_{\mu \nu \sigma }\) on the right hand side of Eq. (40) with a nonlocal term \(N_{\mu \nu \sigma }\) whose tangent space projection is expressed as

$$\begin{aligned} N_{\hat{\mu }\hat{\nu }\hat{\sigma }} =\, \int d^4 x' \sqrt{-g(x')} \, \chi (x,x') \, X_{\hat{\mu }\hat{\nu }\hat{\sigma }} (x') \,, \end{aligned}$$
(43)

where \(\chi \) is a causal kernel, and

$$\begin{aligned} X_{\hat{\mu }\hat{\nu }\hat{\sigma }} =\, \mathcal {C}_{\hat{\mu }\hat{\nu }\hat{\sigma }} +\, q \, \widetilde{C}_{[\hat{\mu }} \,\eta _{\hat{\nu }]\sigma } \,, \end{aligned}$$
(44)

with \(\widetilde{C}_{\hat{\mu }}\) denoting the tangent space projection of the torsion pseudo-trace vector

$$\begin{aligned} \widetilde{C}_{\mu } \equiv \, \frac{1}{3} \, \epsilon _{\alpha \beta \gamma \mu } C^{\alpha \beta \gamma } \,, \end{aligned}$$
(45)

and q being a dimensionless constant which determines the extent of the gravitational parity violation.

The Newtonian limit of the NLG theory leads to a modified Poisson’s equation which corresponds precisely to a logarithmic correction term in the gravitational potential we are dealing here in the context of the G-variation. The NLG Newtonian regime has therefore been of interest and extensive studies have been carried out from the point of view of explaining the flat rotation curves of galaxies [72,73,74]. However, beyond linearization, the (fully covariant) NLG theory has no known nonlinear exact solution till date. As such, the focus has shifted in recent times to the study of the local limit of the nonlocal TEGR, construed from the following form of the NLG kernel [75,76,77]:

$$\begin{aligned} \chi (x,x') =\, \frac{S(x)}{\sqrt{-g(x)}} \delta (x - x') \,, \end{aligned}$$
(46)

where S(x) is a dimensionless scalar function of coordinates, which is referred to as the gravitational susceptibility function, in analogy with electrodynamics.

For the spatially homogeneous cosmological space-times, the susceptibility function can be taken to be varying with time only. The nonlocal TEGR equations lead to the modified Friedmann equations:

$$\begin{aligned} & (1 + S) \left(\frac{{\dot{a}}^2}{a^2} +\, \frac{k}{a^2}\right) =\, \frac{8 \pi G}{3} \, \rho , \end{aligned}$$
(47)
$$\begin{aligned} & (1 + S) \left(\frac{2 \ddot{a}}{a} +\, \frac{{\dot{a}}^2}{a^2} +\, \frac{k}{a^2}\right) =\, - 8 \pi G p -\, 2 \dot{S} \frac{\dot{a}}{a} , \qquad \end{aligned}$$
(48)

where \(\rho \) and p denote, respectively, the total energy density and the total pressure, and \(k = 0, \pm 1\) is the spatial curvature constant. In addition, there are two constraints, viz.

$$\begin{aligned} S > -1 \,, \quad k \dot{S} = 0 \,. \end{aligned}$$
(49)

Therefore, either (i) \(\, k = \pm 1\) and \(\,S =\) constant, or (ii) \(k = 0\) and S is an arbitrary function of time. While the case (i) implies the same closed and open Friedmann solutions, modulo a numerical scaling of \(\rho \) and p by a factor \((1 + S)^{-1}\), the case (ii) is potentially of much interest as it not only complies with the assumption of the spatial flatness of the universe, which the observations grossly indicate, but also marks the outcome of an effective G-variation, since the above equations (47) and (48) can be recast as the following set:

$$\begin{aligned} & H^2 =\, \frac{8 \pi G_{\text {eff}}}{3} \, \rho , \end{aligned}$$
(50)
$$\begin{aligned} & \dot{H} =\, - 4 \pi G_{\text {eff}}\left(\rho + p\right) -\, \frac{\dot{G}_{\text {eff}}}{G_{\text {eff}}} \, H , \qquad \end{aligned}$$
(51)

where

$$\begin{aligned} G_{\text {eff}}(t) =\, \frac{G}{1 + S(t)} \,. \end{aligned}$$
(52)

As such, choosing suitably the function S(t), and hence \(G_{\text {eff}}(t)\), one can reproduce the cosmological equations (18) and (21) obtained in the quasi-Newtonian framework (upon replacing G by \(G_0\) and \(G_{\text {eff}}(t)\) by G(t)). Nevertheless, whether such a choice is justifiable from a physical standpoint is presently being examined, among several issues, in the ongoing works [41, 42].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sur, S. Varying Newton’s constant: a cure for gravitational maladies?. Eur. Phys. J. Plus 139, 1049 (2024). https://doi.org/10.1140/epjp/s13360-024-05827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05827-3