Abstract
Many slow-fast systems can exhibit delayed bifurcation, which means that the crucial transition occurs after some delay during the transition between the oscillatory and steady states due to the presence of a slowly varying parameter. We specifically analyze the dynamical behavior of bifurcation delay in a network of nonlocally coupled FitzHugh–Nagumo neurons by adjusting the frequency of slowly varying currents. Interestingly, we observe an appearance of chimera-like states despite a tiny parameter mismatch in the frequency of any single node. The observed chimera-like state is evidenced through the mean-phase velocity profile. The robustness of the obtained results is then tested by perturbing multiple neurons in three different ways: constant, linearly increasing, and decreasing frequency of certain nodes. Importantly, we discover that the observed chimera state is resilient to all perturbations.
Graphical abstract









Similar content being viewed by others
Data availability statement
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
References
D. Pieroux, T. Erneux, Phys. Rev. A. 53, 2765 (1996)
R.J. Field, M. Burger, Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985)
J. Rinzel, S.M. Baer, Biophys. J. 54, 551 (1987)
S.M. Baer, T. Erneux, J. Rinzel, SIAM J. Appl. Math. 49, 55 (1989)
E. Jakobsson, R. Guttman, The Biophysical Approach to Excitable Systems, edited by W. J. Adelman and D. E. Gold man (Plenum Press, New York,), pp. 197-211 (1981)
P. Ashwin, S. Wieczorek, R. Vitolo, P. Cox, Philos. Trans. R. Soc. A 370, 1166 (1962)
X. Han, Q. Bi, Solitons & Fractals 169, 113270 (2023)
D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 37, 212 (2016)
D. Premraj, K. Suresh, K. Thamilmaran, Chaos 29, 123127 (2019)
M. Perc, M. Marhl, Chaos Solitons & Fractals 27, 395 (2006)
Y. Park, Y. Do, J.M. Lopez, Phys. Rev. E 84, 056604 (2011)
D. Premraj, K. Suresh, J. Palanivel, K. Thamilmaran, Commun. Nonlinear Sci. Numer. Simul. 50, 103 (2017)
R. Mannella, F. Moss, P.V.E. McClintock, Phys. Rev. A 35, 2560 (1987)
D. Premraj, K. Suresh, K. Thamilmaran, Chaos 29, 123127 (2019)
G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)
S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. life Rev. 28, 100 (2019)
A. Zakharova, Chimera Patterns in Networks (Springer, 2020)
M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)
S. Kanagaraj, P. Durairaj, A. Karthikeyan, K. Rajagopal, Eur. Phys. J. Plus 137, 1223 (2022)
P. Durairaj, S. Kanagaraj, P.N. Rao, A. Karthikeyan, K. Rajagopal, Eur. Phys. J. Plus 138, 900 (2023)
R. FitzHugh, Biophys. J. 1, 445 (1961)
A.V. Andreev, N.S. Frolov, A.N. Pisarchik, A.E. Hramov, Phys. Rev. E. 100, 022224 (2019)
T.A. Glaze, S. Lewis, S. Bahar, Chaos 26, 083119 (2016)
H. Bao, Y. Zhang, W. Liu, B. Bao, Nonlinear Dyn. 100, 937 (2020)
S. Kanagaraj, I. Moroz, P. Durairaj, A. Karthikeyan, K. Rajagopal, Cognit. Neurodyn. 18, 473–484 (2024)
A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)
C.H. Tian, X.Y. Zhang, Z.H. Wang, Z.H. Liu, Front. Phys. 12, 1–8 (2017)
J. Tang, J. Zhang, J. Ma, J. Luo, Sci. China Technol. Sci. 62, 1134 (2019)
C. Tian, L. Cao, H. Bi, K. Xu, Z. Liu, Nonlinear Dyn. 93, 1695 (2018)
I. Hussain, S. Jafari, D. Ghosh, M. Perc, Nonlinear Dyn. 104, 2711 (2021)
E. Rybalova, V.S. Anishchenko, G.I. Strelkova, A. Zakharova, Chaos 29, 071106 (2019)
S. Huang, Z. Li, Z. Cai, C. Yu, J. Zhang, M. Wang, F. Xu, Frequency chimera state induced by time delays in neural networks (2023)
D. Premraj, K. Suresh, T. Banerjee, K. Thamilmaran, Phys. Rev. E. 98, 022206 (2018)
X. Wu, X. Wu, C.Y. Wang, B. Mao, J.A. Lu, J. Lü, Y.C. Zhang, L. Lü, Phys. Rep. 1060, 1–54 (2024)
Acknowledgements
M. Rhaima was supported by the Researchers Supporting Project number (RSPD2024R683) King Saud University, Riyadh, Saudi Arabia. SS and PD acknowledges with gratitude that this work was funded by the Centre for Nonlinear Systems, Chennai Institute of Technology (CIT), India, under funding number CIT/CNS/2024/RP-005. PD is partially supported by National Natural Science Foundation of china (NSFC) No. 12375031 and Scientific research start-up project (2024) No. 24BS104.
Author information
Authors and Affiliations
Contributions
All the authors contributed equally to the preparation of this manuscript.
Corresponding author
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Durairaj, P., Shanmugam, S., Durairaj, P. et al. Bifurcation delay in a network of nonlocally coupled slow-fast FitzHugh–Nagumo neurons. Eur. Phys. J. B 97, 62 (2024). https://doi.org/10.1140/epjb/s10051-024-00707-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epjb/s10051-024-00707-2