[go: up one dir, main page]

Skip to main content
Log in

Charmonium decay widths in magnetized matter

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We study the partial decay widths of the charmonium states ( \( J/\psi\), \( \psi (3686)\), \( \psi (3770)\), \( \chi_{c0}\), \( \chi_{c2}\) to \( D\bar{D}\) (\( D^+D^-\) or \( D^0\bar{D^0}\)) in isospin asymmetric nuclear matter, in the presence of strong magnetic fields. The in-medium partial decay widths of charmonium states to \( D\bar{D}\) are calculated within a light quark-antiquark pair creation model, namely the 3P0 model, using the in-medium masses of the charmonia as well as D and \( \bar{D}\) mesons in the magnetized nuclear matter, obtained within a chiral effective model. The presence of a magnetic field leads to Landau quantization of the energy levels of the proton in the nuclear medium. The effects of magnetic field and isospin asymmetry on the charmonium decay widths to \( D\bar{D}\) are found to be quite prominent. The effects of the anomalous magnetic moments have also been taken into consideration for obtaining the in-medium masses of these heavy flavour mesons, used to calculate the partial decay widths of the charmonium states. The medium modifications of the charmonium decay widths can have observable consequences on the production of the charmed mesons in high energy asymmetric heavy ion collision experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017)

    Article  ADS  Google Scholar 

  2. V. Skokov, A.Y. Illarionov, V. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009)

    ADS  Google Scholar 

  3. W.T. Deng, X.G. Huang, Phys. Rev. C 85, 044907 (2012)

    Article  ADS  Google Scholar 

  4. D. Kharzeev, L. McLerran, H. Warringa, Nucl. Phys. A 803, 227 (2008)

    ADS  Google Scholar 

  5. K. Fukushima, D.E. Kharzeev, H.J. Warringa, Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  6. K. Tuchin, Phys. Rev. C 83, 017901 (2011)

    Article  ADS  Google Scholar 

  7. K. Marasinghe, K. Tuchin, Phys. Rev. C 84, 044908 (2011)

    Article  ADS  Google Scholar 

  8. K. Tuchin, Phys. Rev. C 82, 034904 (2010) 83

    Article  ADS  Google Scholar 

  9. K. Tuchin, Phys. Rev. C 88, 024911 (2013)

    Article  ADS  Google Scholar 

  10. Arpan Das, S.S. Dave, P.S. Saumia, A.M. Srivastava, Phys. Rev. C 96, 034902 (2017)

    Article  ADS  Google Scholar 

  11. P. Gubler, K. Hattori, S.H. Lee, M. Oka, S. Ozaki, K. Suzuki, Phys. Rev. D 93, 054026 (2016)

    Article  ADS  Google Scholar 

  12. C.S. Machado, F.S. Navarra, E.G. de Oliveira, J. Noronha, M. Strickland, Phys. Rev. D 88, 034009 (2013)

    Article  ADS  Google Scholar 

  13. C.S. Machado, R.D. Matheus, S.I. Finazzo, J. Noronha, Phys. Rev. D 89, 074027 (2014)

    Article  ADS  Google Scholar 

  14. Sushruth Reddy P, Amal Jahan CS, Nikhil Dhale, Amruta Mishra, J. Schaffner-Bielich, Phys. Rev. C 97, 065208 (2018)

    Article  ADS  Google Scholar 

  15. Nikhil Dhale, Sushruth Reddy P, Amal Jahan CS, Amruta Mishra, Phys. Rev. C 98, 015202 (2018)

    Article  ADS  Google Scholar 

  16. S. Cho, K. Hattori, S.H. Lee, K. Morita, S. Ozaki, Phys. Rev. Lett. 113, 172301 (2014)

    Article  ADS  Google Scholar 

  17. S. Cho, K. Hattori, S.H. Lee, K. Morita, S. Ozaki, Phys. Rev. D 91, 045025 (2015)

    Article  ADS  Google Scholar 

  18. Amal Jahan CS, Nikhil Dhale, Sushruth Reddy P, Shivam Kesarwani, Amruta Mishra, Phys. Rev. C 98, 065202 (2018)

    Article  ADS  Google Scholar 

  19. Pallabi Parui, Ankit Kumar, Sourodeep De, Amruta Mishra, arXiv:1811.04622 [nucl-th]

  20. K. Suzuki, S.H. Lee, Phys. Rev. C 96, 035203 (2017)

    Article  ADS  Google Scholar 

  21. J. Alford, M. Strickland, Phys. Rev. D 88, 105017 (2013)

    Article  ADS  Google Scholar 

  22. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 8, 2223 (1973)

    Article  ADS  Google Scholar 

  23. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 9, 1415 (1974)

    Article  ADS  Google Scholar 

  24. A. Le Yaouanc, L. Oliver, O. Pene, J.C. Raynal, Phys. Rev. D 11, 1272 (1975)

    Article  ADS  Google Scholar 

  25. T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys. Rev. D 55, 4157 (1997)

    Article  ADS  Google Scholar 

  26. B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548, 153 (2002)

    Article  ADS  Google Scholar 

  27. Arvind Kumar, Amruta Mishra, Eur. Phys. J. A 47, 164 (2011)

    Article  ADS  Google Scholar 

  28. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  29. E. Eichten, K. Gottfried, T. Kinoshita, K.D. Lane, T.M. Yan, Phys. Rev. D 21, 203 (1980)

    Article  ADS  Google Scholar 

  30. L. Kluberg, H. Satz, in Relativistic Heavy Ion Physics, edited by R. Stock, Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms, Vol. 23 (Springer, Berlin, Heidelberg, 2010)

  31. F. Karsch, M.T. Mehr, H. Satz, Z. Phys. C 37, 617 (1988)

    Article  ADS  Google Scholar 

  32. A. Bazavov, P. Petreczky, A. Velytsky, Quark-Gluon Plasma 4, edited by R.C. Hwa, Xin-Nian Wang (World Scientific Publishers, 2010) p. 61

  33. S. Digal, P. Petreczky, H. Satz, Phys. Lett. B 514, 57 (2001)

    Article  ADS  Google Scholar 

  34. A. Mocsy, P. Petreczky, Phys. Rev. D 73, 074007 (2006)

    Article  ADS  Google Scholar 

  35. S.F. Radford, W.W. Repko, Phys. Rev. D 75, 074031 (2007)

    Article  ADS  Google Scholar 

  36. M.E. Peskin, Nucl. Phys. B 156, 365 (1979)

    Article  ADS  Google Scholar 

  37. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979)

    Article  ADS  Google Scholar 

  38. M.B. Voloshin, Nucl. Phys. B 154, 365 (1979)

    Article  ADS  Google Scholar 

  39. Su Houng Lee, Che Ming Ko, Phys. Rev. C 67, 038202 (2003)

    Article  ADS  Google Scholar 

  40. Sugsik Kim, Su Houng Lee, Nucl. Phys. A 679, 517 (2001)

    Article  ADS  Google Scholar 

  41. F. Klingl, S. Kim, S.H. Lee, P. Morath, W. Weise, Phys. Rev. Lett. 82, 3396 (1999)

    Article  ADS  Google Scholar 

  42. Arvind Kumar, Amruta Mishra, Phys. Rev. C 82, 045207 (2010)

    Article  ADS  Google Scholar 

  43. K. Morita, S.H. Lee, Phys. Rev. C 77, 064904 (2008)

    Article  ADS  Google Scholar 

  44. S.H. Lee, K. Morita, Phys. Rev. D 79, 011501(R) (2009)

    Article  ADS  Google Scholar 

  45. K. Morita, S.H. Lee, Phys. Rev. C 85, 044917 (2012)

    Article  ADS  Google Scholar 

  46. K. Morita, S.H. Lee, Phys. Rev. Lett. 100, 022301 (2008)

    Article  ADS  Google Scholar 

  47. Arata Hayashigaki, Phys. Lett. B 487, 96 (2000)

    Article  Google Scholar 

  48. T. Hilger, R. Thomas, B. Kämpfer, Phys. Rev. C 79, 025202 (2009)

    Article  ADS  Google Scholar 

  49. T. Hilger, B. Kämpfer, S. Leupold, Phys. Rev. C 84, 045202 (2011)

    Article  ADS  Google Scholar 

  50. S. Zschocke, T. Hilger, B. Kämpfer, Eur. Phys. J. A 47, 151 (2011)

    Article  ADS  Google Scholar 

  51. Z.-G. Wang, Tao Huang, Phys. Rev. C 84, 048201 (2011)

    Article  ADS  Google Scholar 

  52. Z.-G. Wang, Phys. Rev. C 92, 065205 (2015)

    Article  ADS  Google Scholar 

  53. Rahul Chhabra, Arvind Kumar, Eur. Phys. J. A 53, 105 (2017)

    Article  ADS  Google Scholar 

  54. Rahul Chhabra, Arvind Kumar, Eur. Phys. J. C 77, 726 (2017)

    Article  ADS  Google Scholar 

  55. Arvind Kumar, Rahul Chhabra, Phys. Rev. C 92, 035208 (2015)

    Article  ADS  Google Scholar 

  56. K. Tsushima, D.H. Lu, A.W. Thomas, K. Saito, R.H. Landau, Phys. Rev. C 59, 2824 (1999)

    Article  ADS  Google Scholar 

  57. A. Sibirtsev, K. Tsushima, A.W. Thomas, Eur. Phys. J. A 6, 351 (1999)

    Article  ADS  Google Scholar 

  58. K. Tsushima, F.C. Khanna, Phys. Lett. B 552, 138 (2003)

    Article  ADS  Google Scholar 

  59. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988)

    Article  ADS  Google Scholar 

  60. K. Saito, A.W. Thomas, Phys. Lett. B 327, 9 (1994)

    Article  ADS  Google Scholar 

  61. K. Saito, K. Tsushima, A.W. Thomas, Nucl. Phys. A 609, 339 (1996)

    Article  ADS  Google Scholar 

  62. P.K. Panda, A. Mishra, J.M. Eisenberg, W. Greiner, Phys. Rev. C 56, 3134 (1997)

    Article  ADS  Google Scholar 

  63. G. Krein, A.W. Thomas, K. Tsushima, Phys. Lett. B 697, 136 (2011)

    Article  ADS  Google Scholar 

  64. G. Krein, A.W. Thomas, K. Tsushima, Prog. Part. Nucl. Phys. 100, 161 (2018)

    Article  ADS  Google Scholar 

  65. S. Yasui, K. Sudoh, Phys. Rev. C 87, 015202 (2013)

    Article  ADS  Google Scholar 

  66. S. Yasui, K. Sudoh, Phys. Rev. C 89, 015201 (2014)

    Article  ADS  Google Scholar 

  67. S. Yasui, K. Sudoh, Phys. Rev. C 88, 015201 (2013)

    Article  ADS  Google Scholar 

  68. L. Tolos, J. Schaffner-Bielich, A. Mishra, Phys. Rev. C 70, 025203 (2004)

    Article  ADS  Google Scholar 

  69. L. Tolos, J. Schaffner-Bielich, H. Stöcker, Phys. Lett. B 635, 85 (2006)

    Article  ADS  Google Scholar 

  70. T. Mizutani, A. Ramos, Phys. Rev. C 74, 065201 (2006)

    Article  ADS  Google Scholar 

  71. L. Tolos, A. Ramos, T. Mizutani, Phys. Rev. C 77, 015207 (2008)

    Article  ADS  Google Scholar 

  72. J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763, 90 (2005)

    Article  ADS  Google Scholar 

  73. R. Molina, D. Gamermann, E. Oset, L. Tolos, Eur. Phys. J. A 42, 31 (2009)

    Article  ADS  Google Scholar 

  74. L. Tolos, R. Molina, D. Gamermann, E. Oset, Nucl. Phys. A 827, 249c (2009)

    Article  ADS  Google Scholar 

  75. J. Schechter, Phys. Rev. D 21, 3393 (1980)

    Article  ADS  Google Scholar 

  76. P. Papazoglou, D. Zschiesche, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  77. A. Mishra, K. Balazs, D. Zschiesche, S. Schramm, H. Stöcker, W. Greiner, Phys. Rev. C 69, 024903 (2004)

    Article  ADS  Google Scholar 

  78. Amruta Mishra, Arindam Mazumdar, Phys. Rev. C 79, 024908 (2009)

    Article  ADS  Google Scholar 

  79. Arvind Kumar, Amruta Mishra, Phys. Rev. C 81, 065204 (2010)

    Article  ADS  Google Scholar 

  80. A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stöcker, Phys. Rev. C 69, 015202 (2004)

    Article  ADS  Google Scholar 

  81. Divakar Pathak, Amruta Mishra, Adv. High Energy Phys. 2015, 697514 (2015)

    Google Scholar 

  82. D. Zschiesche, A. Mishra, S. Schramm, H. Stöcker, W. Greiner, Phys. Rev. C 70, 045202 (2004)

    Article  ADS  Google Scholar 

  83. A. Mishra, E.L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm, H. Stöcker, Phys. Rev. C 70, 044904 (2004)

    Article  ADS  Google Scholar 

  84. A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006)

    Article  ADS  Google Scholar 

  85. A. Mishra, S. Schramm, W. Greiner, Phys. Rev. C 78, 024901 (2008)

    Article  ADS  Google Scholar 

  86. Amruta Mishra, Arvind Kumar, Sambuddha Sanyal, S. Schramm, Eur. Phys. J. A 41, 205 (2009)

    Article  ADS  Google Scholar 

  87. Amruta Mishra, Arvind Kumar, Sambuddha Sanyal, V. Dexheimer, S. Schramm, Eur. Phys. J. 45, 169 (2010)

    Article  ADS  Google Scholar 

  88. T. Hatsuda, S.H. Lee, Phys. Rev. C 46, R34 (1992)

    Article  ADS  Google Scholar 

  89. Amruta Mishra, Phys. Rev. C 91, 035201 (2015)

    Article  ADS  Google Scholar 

  90. Ankit Kumar, Pallabi Parui, Sourodeep De, Amruta Mishra, arXiv:1811.012570 [nucl-th]

  91. Anuj Kumar Singh, Neerajj Singh Rawat, Pratik Aman, Amruta Mishra, arXiv:1812.03011 [nucl-th]

  92. Divakar Pathak, Amruta Mishra, Phys. Rev. C 91, 045206 (2015)

    Article  ADS  Google Scholar 

  93. Divakar Pathak, Amruta Mishra, Int. J. Mod. Phys. E 23, 1450073 (2014)

    Article  Google Scholar 

  94. Amruta Mishra, Divakar Pathak, Phys. Rev. C 90, 025201 (2014)

    Article  ADS  Google Scholar 

  95. Amruta Mishra, S.P. Misra, W. Greiner, Int. J. Mod. Phys. E 24, 155053 (2015)

    Google Scholar 

  96. Amruta Mishra, S.P. Misra, Phys. Rev. C 95, 065206 (2017)

    Article  ADS  Google Scholar 

  97. Amal Jahan CS, Shivam Kesarwani, Sushruth Reddy P, Nikhil Dhale, Amruta Mishra, arXiv:1807.07572 [nucl-th]

  98. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  99. S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2239 (1969)

    Article  ADS  Google Scholar 

  100. C.G. Callan, S. Coleman, J. Wess, B. Zumino, Phys. Rev. 177, 2247 (1969)

    Article  ADS  Google Scholar 

  101. W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969)

    Article  ADS  Google Scholar 

  102. Erik K. Heide, Serge Rudaz, Paul J. Ellis, Nucl. Phys. A 571, 713 (2001)

    Article  ADS  Google Scholar 

  103. A. Broderick, M. Prakash, J.M. Lattimer, Astrophys. J. 537, 351 (2002)

    Article  ADS  Google Scholar 

  104. A.E. Broderick, M. Prakash, J.M. Lattimer, Phys. Lett. B 531, 167 (2002)

    Article  ADS  Google Scholar 

  105. F.X. Wei, G.J. Mao, C.M. Ko, L.S. Kisslinger, H. Stöcker, W. Greiner, J. Phys. G, Nucl. Part. Phys. 32, 47 (2006)

    Article  ADS  Google Scholar 

  106. Guang-Jun Mao, Akira Iwamoto, Zhu-Xia Li, Chin. J. Astrophys. 3, 359 (2003)

    Article  ADS  Google Scholar 

  107. M. Pitschmann, A.N. Ivanov, arXiv:1205.5501 [math-ph]

  108. V. Dexheimer, R. Negreiros, S. Schramm, Eur. Phys. J. A 48, 189 (2012)

    Article  ADS  Google Scholar 

  109. V. Dexheimer, B. Franzon, S. Schramm, J. Phys. Conf. Ser. 861, 012012 (2017)

    Article  Google Scholar 

  110. R.M. Aguirre, A.L. De Paoli, Eur. Phys. J. A 52, 343 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mishra.

Additional information

Communicated by L. Tolos

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data generated during this investigation are contained in the present published article.]

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Jahan CS, A., Kesarwani, S. et al. Charmonium decay widths in magnetized matter. Eur. Phys. J. A 55, 99 (2019). https://doi.org/10.1140/epja/i2019-12778-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2019-12778-2

Navigation