Abstract—A new algorithm for a three-dimensional reconstruction of the surrounding environment is proposed. The algorithm is able to create accurate three-dimensional maps in real-time with the help of a RGB-D depth camera. This algorithm can be used in autonomous mobile robotics, where the robot needs to localize itself in unknown environments by processing onboard sensors without external reference systems such as a global positioning system. We analyze various combinations of common detectors and descriptors of visual features in terms of their recognition efficiency. To match the point clouds between consecutive frames, the iterative closest point (ICP) method is used. To improve the quality of the three-dimensional reconstruction, an adaptive approach to calculating the estimate of the camera position is suggested. The proposed system is able to efficiently process complex scenes at a high rate, and its performance on available benchmark databases is comparable with that of the state-of-the-art systems.




Similar content being viewed by others
REFERENCES
S. Thrun, W. Burgar, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) (MIT Press, Cambridge, 2005).
J. Gonzalez-Fraga, V. Kober, and E. Gutierrez, “Accurate alignment of rgb-d frames for 3d map generation,” Proc. SPIE 10752, 107522J-7 (2018).
H. Strasdat, J. M. M. Montiel, and A. J. Davison, “Visual SLAM: Why filter?” Image and Vision Comput. 30, 65−77 (2012).
G. Grisetti, R. Kuemmerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,” IEEE Intell. Transport. Syst. Mag. 2 (4), 31−43 (2010).
F. Endres, J. Hess, J. Sturm, D. Cremers, W. Burgard, “3D mapping with an RGB-D camera,” IEEE Trans. on Robotics 30 (1), 177−185 (2014).
M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24, 381−395 (1981).
P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Mach. Intell. 14, 239−256 (1992).
A. Makovetsii, S. Voronin, V. Kober, and A. Voronin, “A point-to-plane registration algorithm for orthogonal transformations,” Proc. SPIE 10752, 107522R-8 (2018).
A. Segal, D. Hahnel, and S. Thrun, “Generalized-ICP,” in Proc. Conf. Robotics: Science and Systems V, Univ. of Washington Seattle, USA, June 28–July 1, 2009 (MIT Press, Cambridge, Massachusetts, 2010), pp. 15607 (2009).https://doi.org/10.15607/RSS.2009.V.021.
D. Miramontes-Jaramillo, V. Kober, V. H. Diaz-Ramirez, and V. Karnaukhov, Descriptor-based tracking algorithm using a depth camera," J. Commun. Techn. Electron. 62, 638−647 (2017).
J. Diaz-Escobar, V. Kober, and J. A. Gonzalez-Fraga, “LUIFT: LUminance Invariant Feature Transform. Mathematical Problems in Engineering,” 2018, ID 3758102 (2018).
J. Diaz-Escobar, V. Kober, V. Karnaukhov, and J. A. Gonzalez-Fraga, “A new invariant to illumination feature descriptor for pattern recognition,” J. Commun. Technol. Electron. 63, 1469−1474 (2018).
J. Diaz-Escobar and V. Kober, “A robust HOG-based descriptor for pattern recognition,” Proc. SPIE 9971, 99712A-7 (2016).
B. A. Echeagaray-Patron, V. Kober, V. Karnaukhov, and V. Kuznetsov, “A method of face recognition using 3D facial surfaces,” J. Commun. Technol. Electron. 62, 648−652 (2017).
B. A. Echeagaray-Patron and V. Kober, “Face recognition based on matching of local features on 3D dynamic range sequences,” Proc. SPIE 9971, 997131-6 (2016).
J. Shi and C. Tomasi, “Good features to track,” Tech. Rep., Ithaca, NY, USA (1993).
E. Rosten and T. Drummond, Machine Learning for High-Speed Corner Detection (Proc. 9th Eur. Conf. on Computer Vision. V. Part I, ECCV'06, Berlin, Heidelberg,2006) (Springer-Verlag, Berlin, 2006), V, Part 1, pp. 430−443.
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in Proc. 2011 Int. Conf. on Computer Vision, (ICCV’11), IEEE Computer Society, Washington, DC, USA,2011 (IEEE, New York, 2011), pp. 2564−2571.
S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary robust invariant scalable keypoints,” in Proc. 2011 Int. Conf. on Computer Vision, (ICCV’11), IEEE Computer Society, Washington, DC, USA,2011 (IEEE, New York, 2011), pp. 2548−2555.
K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit, P. Fua, “View-based maps,” Int. J. Robotics Res. 29, 941−957 (2010).
M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust independent elementary features,” in Proc. 11th Eur. Conf. on Computer Vision, (ECCV’10)2010 (Springer-Verlag, Berlin, 2010), Part IV, pp. 778−792.
R. Ortiz, “FREAK: Fast retina keypoint,” in Proc. 2012 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Washington, DC,2012 (IEEE, New York, 2012), pp. 510−517.
G. Levi and T. Hassner, “LATCH: Learned arrangements of three patch codes,” in Proc. IEEE Winter Conf. on Applications of Computer Vision (WACV), Lake Placid, NY, USA,March 7−9,2016 (WACV, 2016), pp. 1−9.
D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vision 60, 91−110 (2004).
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110, 346−359 (2008).
E. Garcia-Fidalgo and A. Ortiz, “Vision-based topological mapping and localization methods,” Robot. Autonom. Syst. 64, 1−20 (2015).
K. Mikolajczyk and C. Schmid, “A performance evaluation of local descriptors,” IEEE Trans. Pattern Anal. Mach. Intell. 27, 1615−1630 (2005).
R. Mur-Artal and J. M. M. Montiel, J. D. Tardґos, “ORB-SLAM: A versatile and accurate monocular SLAM system,” IEEE Trans. Robot. 31, 1147−1163 (2015).
T. Pire, T. Fischer, G. Castro, P. De Cristoforis, J. Civera, J. Jacobo-Berlles, “S-PTAM: Stereo parallel tracking and mapping,” Robot. Autonom. Syst. (RAS) 93, 27−42 (2017).
M. Paton and J. Kosecka, “Adaptive RGB-D localization,” in Proc. Ninth Conf. on Computer and Robot Vision (CRV), Toronto, Ontario, Canada,2012 (CRV, 2012), pp. 24−31.
H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige, “Double window optimisation for constant time visual slam,” in Proc. IEEE Int. Conf. on Computer Vision (ICCV), Barcelona, Spain, Nov.2011 (IEEE, New York, 2011), pp. 2352−2359.
D. Galvez-Lopez and J. D. Tardos, “Bags of binary words for fast place recognition in image sequences,” IEEE Trans. Robot. 28, 1188−1197 (2012).
A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, W. Burgard, “OCTOMAP: An efficient probabilistic, 3D mapping framework based on octrees,” Auton. Robots 34, 189−206 (2013).
J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,” in Proc. Int. Conf. on Intelligent Robot Systems (IROS), Vila Moura, Algarve, Portugal, Oct. 12, 2012 (IROS, 2012).
C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation for RGB-D cameras,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA) Karlsruhe, Germany, May 6–10,2013 (IEEE, New York, 2013), pp. 3748−3754.
R. Mur-Artal and J. D. Tardґos, “ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras,” IEEE Trans. Robot. 33, 1255−1262 (2017).
Funding
The work was supported by the Russian Foundation for Basic Research, project nos. 18-08-00782 and 18-07-00963.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by E. Smirnova
Rights and permissions
About this article
Cite this article
Ortiz-Gonzalez, A., Kober, V.I., Karnaukhov, V.N. et al. Algorithm for the Design of a Three-Dimensional Map of the Environment with a Depth Camera. J. Commun. Technol. Electron. 65, 690–697 (2020). https://doi.org/10.1134/S1064226920060224
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1064226920060224