[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Highly Sensitive Detection of Dopamine, Ascorbic and Uric Acids using Dianix Yellow/Multi-walled Carbon Nanotubes Modified Electrode

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A glassy carbon electrode has been modified by electrochemical polymerization of dianix yellow along with multi-walled carbon nanotubes (MWCNTs) and utilized for the selective determination of dopamine (DA), ascorbic acid (AA) and uric acid (UA). Atomic force microscopy and scanning electron microscopy images were obtained to compare the surface morphology and topography of the bare and modified electrodes. Also, the electrochemical activities of DA, AA, and UA on the bare and modified electrodes were evaluated with the use of cyclic, linear sweep and differential pulse voltammetry (DPV). Large peak separation, good sensitivity, and stability allow to apply the poly-dianix yellow/MWCNTs modified electrode for the determination of DA individually and in the presence of AA and UA. The DPV data showed the linearity of DA, AA, and UA peak currents in the concentrations ranges of 7–2500 nM, 5–110 µM, and 0.100–7.500 µM with the detection limits of 6.1, 99 and 8.9 nM, respectively. The proposed electrode was applied for the quantification of dopamine in human blood serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Herrero-Latorre, C., Álvarez-Méndez, J., Barciela-García, J., García-Martin, S., and Peña-Crecente, R.M., Anal. Chim. Acta, 2015, vol. 853, p. 77.

    CAS  PubMed  Google Scholar 

  2. Yang, S., Yin, Y., Li, G., Yang, R., Li, J., and Qu, L., Sens. Actuators, B, 2013, vol. 178, p. 217.

    CAS  Google Scholar 

  3. Jinlei, Z., Xuecai, T., Dandan, Z., Shengwei, T., Zenwei, H., Yan, M., and Zaiyin, H., Electrochim. Acta, 2010, vol. 55, no. 7, p. 2522.

    Google Scholar 

  4. Shahmiri, M.R., Bahari, A., Karimi-Malah, H., Hosseinzadeh, R., and Mirnia, N., Sens. Actuators, B, 2013, vol. 177, p. 70.

    CAS  Google Scholar 

  5. Gheibi, S., Karimi-Malah, H., Khalilzadeh, M.A., and Bagheri, H., J. Food Sci. Technol., 2015, vol. 52, no. 1, p. 276.

    CAS  Google Scholar 

  6. Lian, W., Liu, S., Wang, L., and Liu, H., Biosens. Bioelectron., 2015, vol. 73, p. 214.

    CAS  PubMed  Google Scholar 

  7. Wang, W., Wang, F., Yao, Y., Hu, S., and Shiu, K.K., Electrochim. Acta, 2010, vol. 55, no. 23, p. 7055.

    CAS  Google Scholar 

  8. Barsan, M.M., Ghica, M.E., and Brett, C.M.A., Anal. Chim. Acta, 2015, vol. 881 p, p. 1.

  9. Moreno, M., Arribas, A.S., Bermejo, E., Chicharro, M., Zapardiel, A., Rodríguez, M.C., Jalit, Y., and Rivas, G.A., Talanta, 2010, vol. 80, no. 5, p. 2149.

    CAS  PubMed  Google Scholar 

  10. Li, Y., Liu, X., Liu, X., Mai, N., Li, Y., Wei, W., and Cai, Q., Colloids Surf., B, 2011, vol. 88, no. 1, p. 402.

    CAS  Google Scholar 

  11. Levitan, I.B. and Kaczmarek, L.K., The Neuron: Cell and Molecular Biology, Oxford: Oxford University Press, 2015.

    Google Scholar 

  12. Gupta, P., Goyal, R.N., and Shim, Y-B., Sens. Actuators, B, 2015, vol. 213, p. 72.

    CAS  Google Scholar 

  13. Ginovart, N. and Kapur, S., Role of dopamine D2 receptors for antipsychotic activity, in Handbook of Experimental Pharmacology, Springer, 2012, vol. 212, p. 27.

  14. Cruz Moraes, F., Cabral, M.F., Machado, S.A.S., and Mascaro, L.H., Electroanalysis, 2008, vol. 20, no. 8, p. 851.

    Google Scholar 

  15. Aslani, B.A. and Ghobadi, S., Life Sci., 2016, vol. 146, p. 163.

    Google Scholar 

  16. Kleszczewska, E., Pharmazie, 2000, vol. 55, p. 640.

    CAS  PubMed  Google Scholar 

  17. Garewal, H., Meyskens, F., Friedman, S., Alberts, D., and Ramsey, L., Prev. Med., 1993, vol. 22, no. 5, p. 701.

    CAS  PubMed  Google Scholar 

  18. Csiffáry, G., Futo, P., Adanyi, N., and Kiss, A., Food Technol. Biotechnol., 2016, vol. 54, p. 31.

    PubMed  PubMed Central  Google Scholar 

  19. Nweze, C.C., Abdulganiyu, M.G., and Erhabor, O.G., Int. J. Sci. Environ. Technol., 2015, vol. 4, p. 17.

    Google Scholar 

  20. Tai, A. and Gohda, E., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2007, vol. 853, no. 1, p. 214.

    CAS  Google Scholar 

  21. Szultka, M., Buszewska-Forajta, M., Kaliszan, R., and Buszewski, B., Electrophoresis, 2014, vol. 35, no. 4, p. 585.

    CAS  PubMed  Google Scholar 

  22. Zhu, Q., Dong, D., Zheng, X., Song, H., Zhao, X., Chen, H., and Chen, X., RSC Adv., 2016, vol. 6, no. 30, p. 25047.

    CAS  Google Scholar 

  23. Xuemei, S., Yan, N., Sai, B., and Shusheng, Z., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2008, vol. 870, no. 1, p. 46.

    Google Scholar 

  24. Pisoschi, A.M., Pop, A., Serban, A.I., and Fafaneata, C., Electrochim. Acta, 2014, vol. 121, p. 443.

    CAS  Google Scholar 

  25. Thangamuthu, R., Kumar, S.M.S., and Pillai, K.C., Sens. Actuators, B, 2007, vol. 120, no. 2, p. 745.

    CAS  Google Scholar 

  26. Beberashvili, I., Sinuani, I., Azar, A., Shapiro, G., Feldman, L., Stav, K., Sandbank, J., and Averbukh, Z., Nutrition, 2015, vol. 31, no. 1, p. 138.

    CAS  PubMed  Google Scholar 

  27. Zurlo, A., Veronese, N., Giantin, V., Maselli, M., Zambon, S., Maggi, S., Musacchio, E., Toffanello, E.D., Sartori, L., Perissinotto, E., Crepaldi, G., Manzato, E., and Sergi, G., Nutr. Metab. Cardiovasc. Dis., 2016, vol. 26, no. 1, p. 27.

    CAS  PubMed  Google Scholar 

  28. García, M.G., Puig, J.G., and Torres, R.J., J. Inherited Metab. Dis., 2012, vol. 35, no. 6, p. 1129.

    PubMed  Google Scholar 

  29. Caraba, A., Serban, C., Romosan, I., Dragan, S., and Timar, R., Exp. Clin. Cardiol., 2014, vol. 20, p. 2106.

    CAS  Google Scholar 

  30. Zhang, L., Yuan, W.J., and Hou, B.Q., J. Electroanal. Chem., 2013, vol. 689, p. 135.

    CAS  Google Scholar 

  31. Wang, X., Wu, M., Tang, W., Zhu, Y., Wang, L., Wang, Q., He, P., and Fang, Y., J. Electroanal. Chem., 2013, vol. 695, p. 10.

    CAS  Google Scholar 

  32. Sajid, M., Nazal, M.K., Mansha, M., Alsharaa, A., Jillani, S.M.S., and Basheer, C., TrAC, Trends Anal. Chem., 2016, vol. 76, p. 15.

    CAS  Google Scholar 

  33. Pifferi, V., Cappelletti, G., Bari, C.D., Meroni, D., Spadavecchia, F., and Falciola, L., Electrochim. Acta, 2014, vol. 146, p. 403.

    CAS  Google Scholar 

  34. Yuqing, M., Jianrong, C., and Xiaohua, W., Trends Biotechnol., 2004, vol. 22, no. 5, p. 227.

    PubMed  Google Scholar 

  35. Hatefi-Mehrjardi, A., Ghaemi, N., Karimi, M.A., Ghasemi, M., and Islami-Ramchahi, S., Electroanalysis, 2014, vol. 26, no. 11, p. 2491.

    CAS  Google Scholar 

  36. Tsierkezos, N.G., Othman, S.H., Ritter, U., Hafermann, L., Knauer, A., Köhler, J.M., Downing, C., and McCarthy, E.K., Sens. Actuators, B, 2016, vol. 231, p. 218.

    CAS  Google Scholar 

  37. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  38. Zare, H.R., Rajabzadeh, N., Nasirizadeh, N., and Mazloum, Ardakani., J. Electroanal. Chem., 2006, vol. 589, no. 1, p. 60.

    CAS  Google Scholar 

  39. Chen, S.M., Chen, J.Y., and Vasantha, V.S., Electrochim. Acta, 2006, vol. 52, no. 2, p. 455.

    CAS  Google Scholar 

  40. Vasantha, V.S. and Chen, S.M., J. Electroanal. Chem., 2006, vol. 592, no. 1, p. 77.

    CAS  Google Scholar 

  41. Yan, S., Li, X., Xiong, Y., Wang, M., Yang, L., Liu, X., Li, X., Alshahrani, L.A.M., Liu, P., and Zhang, C., Microchim. Acta, 2016, vol. 183, no. 4, p. 1401.

    CAS  Google Scholar 

  42. Liu, X., Wei, S., Chen, S., Yuan, D., and Zhang, W., Appl. Biochem. Biotechnol., 2014, vol. 173, no. 7, p. 1717.

    CAS  PubMed  Google Scholar 

  43. Balamurugan, J., Kumar, S.M.S., Thangamuthu, R., and Pandurangan, A., J. Mol. Catal. A: Chem., 2013, vol. 372, p. 13.

    CAS  Google Scholar 

  44. Wang, S., Zhang, W., Zhong, X., Chai, Y., and Yuan, R., Anal. Methods, 2015, vol. 7, no. 4, p. 1471.

    CAS  Google Scholar 

  45. Filik, H., Avan, A.A., and Aydar, S., Arab. J. Chem., 2016, vol. 9, no. 3, p. 471.

    CAS  Google Scholar 

  46. Wang, C., Li, J., Shi, K., Wang, Q., Zhao, X., Xiong, Z., Zou, X., and Wang, Y., J. Electroanal. Chem., 2016, vol. 770, p. 56.

    CAS  Google Scholar 

  47. He, S., Yu, Y., Chen, Z., Shi, Q., and Zhang, L., Anal. Lett., 2015, vol. 48, no. 2, p. 248.

    CAS  Google Scholar 

  48. Vinoth, V., Wu, J.J., Asiri, A.M., and Anandan, S., Sens. Actuators, B, 2015, vol. 210, p. 731.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Payame Noor University providing research facilities for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolhamid Hatefi-Mehrjardi.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdolhamid Hatefi-Mehrjardi, Karimi, M.A., Soleymanzadeh, M. et al. Highly Sensitive Detection of Dopamine, Ascorbic and Uric Acids using Dianix Yellow/Multi-walled Carbon Nanotubes Modified Electrode. J Anal Chem 75, 366–377 (2020). https://doi.org/10.1134/S1061934820030132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820030132

Keywords: