[go: up one dir, main page]

Skip to main content
Log in

Non-local Functionals Related to the Total Variation and Connections with Image Processing

  • Manuscript
  • Published:
Annals of PDE Aims and scope Submit manuscript

Abstract

We present new results concerning the approximation of the total variation, \(\int _{\Omega } |\nabla u|\), of a function u by non-local, non-convex functionals of the form

$$\begin{aligned} \Lambda _\delta (u) = \int _{\Omega } \int _{\Omega } \frac{\delta \varphi \big ( |u(x) - u(y)|/ \delta \big )}{|x - y|^{d+1}} \, dx \, dy, \end{aligned}$$

as \(\delta \rightarrow 0\), where \(\Omega \) is a domain in \(\mathbb {R}^d\) and \(\varphi : [0, + \infty ) \rightarrow [0, + \infty )\) is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate and numerous problems remain open. De Giorgi’s concept of \(\Gamma \)-convergence illuminates the situation, but also introduces mysterious novelties. The original motivation of our work comes from Image Processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [33], this result is stated for balls but a similar argument works for cubes with arbitrary orientations.

  2. In [33], this result is stated for balls but a similar argument works for cubes with arbitrary orientations.

References

  1. Allaire, G.: Numerical Analysis and Optimization: An Introduction to Mathematical Modelling and Numerical Simulation. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  2. Ambrosio, L., Bourgain, J., Brezis, H., Figalli, A.: Perimeter of sets and BMO-type norms. C. R. Acad. Sc. Paris 352, 697–698 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Bourgain, J., Brezis, H., Figalli, A.: BMO-type norms related to the perimeter of sets. Commun. Pure Appl. Math. 69, 1062–1086 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, L., De Philippis, G., Martinazzi, L.: Gamma-convergence of nonlocal perimeter functionals. Manuscr. Math. 134, 377–403 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Antonucci, C., Gobbino, M., Migliorini, M., Picenni, N.: Optimal constants for a non-local approximation of Sobolev norms and total variation. Preprint (2017). arXiv:1708.01231

  6. Aubert, G., Kornprobst, P.: Can the nonlocal characterization of Sobolev spaces by Bourgain et al. be useful for solving variational problems? SIAM J. Numer. Anal. 47, 844–860 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, A Volume in Honour of A. Bensoussan’s 60th Birthday, pp. 439–455. IOS Press, Amsterdam (2001)

    Google Scholar 

  8. Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for \(W^{s, p}\) when \(s \uparrow 1\) and applications. J. Anal. Math. 87, 77–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J., Brezis, H., Mironescu, P.: A new function space and applications. J. Eur. Math. Soc. 17, 2083–2101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourgain, J., Nguyen, H.-M.: A new characterization of Sobolev spaces. C. R. Acad. Sci. Paris 343, 75–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braides, A.: \(\Gamma \)-Convergence for Beginners, Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford (2002)

    Google Scholar 

  12. Brezis, H.: How to recognize constant functions. Connections with Sobolev spaces, Volume in honor of M. Vishik, Uspekhi Mat. Nauk 57 (2002), 59–74; English translation in Russian Math. Surveys 57 (2002), 693–708

  13. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, Berlin (2010)

    Book  Google Scholar 

  14. Brezis, H.: New approximations of the total variation and filters in Imaging. Atti. Accad. Naz. Lincei Rend. Lincei Mat. Appl. 26, 223–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brezis, H., Mironescu, P.: Sobolev Maps with Values into the Circle. Birkhäuser (in preparation)

  16. Brezis, H., Nguyen, H.-M.: On a new class of functions related to VMO. C. R. Acad. Sci. Paris 349, 157–160 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Brezis, H., Nguyen, H.-M.: Two subtle convex nonlocal approximation of the \(BV\)-norm. Nonlinear Anal. 137, 222–245 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Brezis, H., Nguyen, H.-M.: The BBM formula revisited. Atti. Accad. Naz. Lincei Rend. Lincei Mat. Appl. 27, 515–533 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Brezis, H., Nguyen, H.-M.: Non-convex, non-local functionals converging to the total variation. C. R. Acad. Sci. Paris 355, 24–27 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brezis, H., Nguyen, H.-M.: Paper in preparation

  21. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005); Updated version in SIAM Review 52 (2010), 113–147

  22. Buades, A., Coll, B., Morel, J.M.: Neighborhood filters and PDE’s. Numer. Math. 105, 1–34 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Buades, A., Coll, B., Morel, J.M.: Non-local means denoising. Image Process. Online 1, 208–212 (2011)

    Google Scholar 

  24. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Berlin (2016)

    Google Scholar 

  25. Caffarelli, L., Roquejoffre, J.M., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. PDE 41, 203–240 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cai, J.-F., Dong, B., Osher, S., Shen, Z.: Image restoration, total variation, wavelet frames, and beyond. J. Am. Math. Soc. 25, 1033–1089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Chan, T., Esedoglu, S., Park, F., Yip, A.: Recent developments in total variation image restoration. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models in Computer Vision, pp. 17–30. Springer, Berlin (2005)

    Google Scholar 

  30. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence, Progress in Nonlinear Differential Equations and their Applications, vol. 8. Birkhäuser Boston Inc., Boston (1993)

    Google Scholar 

  31. Davila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15, 519–527 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  34. Fusco, N.: The quantitative isoperimetric inequality and related topics. Bull. Math. Sci. 5, 517–607 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. Multiscale Model. Simul. 6, 595–630 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, 1005–1028 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Haddad, A., Meyer, Y.: An improvement of Rudin–Osher–Fatemi model. Appl. Comput. Harmon. Anal. 22, 319–334 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul. 4, 1091–1115 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lee, J.S.: Digital image smoothing and the sigma filter. Comput. Vis. Graph. Image Process. 24, 255–269 (1983)

    Article  Google Scholar 

  40. Leoni, G., Spector, D.: Characterization of Sobolev and BV spaces. J. Funct. Anal. 261, 2926–2958 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leoni, G., Spector, D.: Corrigendum to “Characterization of Sobolev and BV spaces”. J. Funct. Anal. 266, 1106–1114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nguyen, H.-M.: Some new characterizations of Sobolev spaces. J. Funct. Anal. 237, 689–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen, H.-M.: \(\Gamma \)-convergence and Sobolev norms. C. R. Acad. Sci. Paris 345, 679–684 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nguyen, H.-M.: Further characterizations of Sobolev spaces. J. Eur. Math. Soc. 10, 191–229 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Nguyen, H.-M.: \(\Gamma \)-convergence, Sobolev norms, and BV functions. Duke Math. J. 157, 495–533 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Nguyen, H.-M.: Some inequalities related to Sobolev norms. Calc. Var. Partial Differ. Equ. 41, 483–509 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Nguyen, H.-M.: Estimates for the topological degree and related topics. J. Fixed Point Theory 15, 185–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filtering: theory and applications. Found. Trends Comput. Graph. Vis. 4, 1–73 (2008)

    Article  MATH  Google Scholar 

  49. Ponce, A.: A new approach to Sobolev spaces and connections to \(\Gamma \)-convergence. Calc. Var. Partial Differ. Equ. 19, 229–255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ponce, A.: Personal communication to the authors (2005)

  51. Ponce, A., Van Schaftingen, J.: Personal communication to the authors (2005)

  52. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  53. Smith, S.M., Brady, J.M.: SUSAN—a new approach to low level image processing. Int. J. Comput. Vis. 23, 45–78 (1997)

    Article  Google Scholar 

  54. Van Schaftingen, J., Willem, M.: Set Transformations, Symmetrizations and Isoperimetric Inequalities, in Nonlinear Analysis and Applications to Physical Sciences, pp. 135–152. Springer Italia, Milan (2004)

    MATH  Google Scholar 

  55. Yaroslavsky, L.P.: Digital Picture Processing. An Introduction. Springer, Berlin (1985)

    Book  Google Scholar 

  56. Yaroslavsky, L.P., Eden, M.: Fundamentals of Digital Optics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to J. Bourgain for sharing fruitful ideas which led to the joint work [10] with the second author. Some of the techniques developed in [10] served as a source of inspiration for many subsequent works. The first author (H.B.) warmly thanks R. Kimmel and J. M. Morel for useful discussions concerning Image Processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haïm Brezis.

Additional information

H. Brezis: Research partially supported by NSF Grant DMS-1207793.

Appendices

Appendix: Proof of Pathology 2

We construct a function \(u \in W^{1, 1}(0, 1)\) such that, for \(\varphi = c_1 \tilde{\varphi } _1\),

$$\begin{aligned} \liminf _{\delta \rightarrow 0} \Lambda _{\delta } (u) = \int _{\Omega } |\nabla u| \quad \text{ and } \quad \limsup _{\delta \rightarrow 0} \Lambda _{\delta } (u) = + \infty . \end{aligned}$$
(A1)

Set \(x_n = 1 - 1/ n\) for \(n \ge 1\). Set \(\delta _1 = 1/100\) and \(T_1 = e^{-\delta _1^{-1}}\). Let \(y_1\) be the middle point of the interval \((x_1, x_1 + T_1)\) and fix \(0< t_1< T_1/ 4\) such that

$$\begin{aligned} \int _{x_1}^{y_1 - t_1} \, dx \int _{y_1 + t_1}^{x_1 + T_1} \frac{\delta _1}{|x - y|^2} \, dy \ge 1. \end{aligned}$$

Since

$$\begin{aligned} \int _{\alpha }^{\beta } \, dx \int _{\beta }^{\gamma } \frac{\delta _1}{|x - y|^2} \, dy = + \infty , \end{aligned}$$
(A2)

for all \(\alpha< \beta < \gamma \), such a \(t_1\) exists. Define \(u_1 \in W^{1, 1}(0, 1)\) by

$$\begin{aligned} u_1(x) = \left\{ \begin{array}{ll} \text{ constant } \text{ in } &{} [0, x_1], \\ \text{ affine } \text{ in } &{} [x_1, y_1 - t_1 ], \\ \text{ affine } \text{ in } &{} [y_1 - t_1 , y_1 + t_1], \\ \text{ affine } \text{ in } &{} [y_1 + t_1 , x_1 + T_1], \\ \text{ constant } \text{ in } &{} [x_1 + T_1, 1], \end{array} \right. \text{ and } \left\{ \begin{array}{c} u_1 (x_1)= 0, \\ u_1(y_1 - t_1) = \delta _1 / 3, \\ u_1(y_1 + t_1) = 2 \delta _1 / 3, \\ u_1(x_1 + T_1) = \delta _1. \end{array}\right. \end{aligned}$$

Assuming that \(\delta _{k}\), \(T_{k}\), \(t_{k}\), and \(u_k\) are constructed for \(1 \le k \le n-1\) and for \(n \ge 2\) such that \(u_k\) is Lipschitz. We then obtain \(\delta _n\), \(T_n\), \(t_n\), and \(u_n\) as follows. Fix \(0< \delta _{n}< \delta _{n-1}/ 8\) sufficiently small such that

$$\begin{aligned} \Lambda _{2\delta _{n}} (u_{n-1}) + \int _{0}^{x_{n-1} + T_{n-1}} \, dx \int _{x_n}^1 \frac{2 \delta _n c_1}{|x-y|^2} \, dy \le \int _0^1 |u_{n-1}'| + 1/ n. \end{aligned}$$
(A3)

Such a constant \(\delta _n\) exists by Proposition 1 (in fact \(u_{n-1}\) is only Lipschitz; however Proposition 1 holds as well for Lipschitz functions, see also Proposition C1). Set \(T_n = e^{- \delta _n^{-1}}\) and let \(y_n\) be the middle point of the interval \((x_n, x_n + T_n)\) and fix \(0< t_n< T_n/ 4\) such that

$$\begin{aligned} \int _{x_n}^{y_n - t_n} \, dx \int _{y_n + t_n}^{x_n + T_n} \frac{\delta _n}{|x - y|^2} \, dy \ge n. \end{aligned}$$
(A4)

Such a \(t_n\) exists by (A2). Define a continuous function \(w_n: [0, 1] \mapsto [0, 1]\), \(n \ge 2\), as follows

$$\begin{aligned} w_n(x) = \left\{ \begin{array}{ll} \text{ constant } \text{ in } &{} [0, x_n], \\ \text{ affine } \text{ in } &{} [x_n, y_n - t_n ], \\ \text{ affine } \text{ in } &{} [y_n - t_n , y_n + t_n], \\ \text{ affine } \text{ in } &{} [y_n + t_n , x_n + T_n], \\ \text{ constant } \text{ in } &{} [x_n + T_n, 1], \end{array} \right. \text{ and } \left\{ \begin{array}{c} w_n(0) = 0, \\ w_n(y_n - t_n) = \delta _n / 3, \\ w_n(y_n + t_n) = 2 \delta _n / 3, \\ w_n (x_n + T_n) = \delta _n. \end{array}\right. \end{aligned}$$

Set

$$\begin{aligned} u_n = u_{n - 1} + w_n \text{ in } (0, 1). \end{aligned}$$

Since \(w_n\) and \(u_{n-1}\) are Lipschitz, it follows that \(u_n\) is Lipschitz. Moreover, one can verify that \((u_n)\) converges in \(W^{1, 1}(0, 1)\) by noting that

$$\begin{aligned} \Vert w_n \Vert _{W^{1,1}(0,1)} \le 2 \delta _n \le 2 \delta _1/ 8^{n-1}. \end{aligned}$$

Let u be the limit of \((u_n)\) in \(W^{1, 1}(0, 1)\). We derive from the construction of \(u_n\) that u is non-decreasing, and for \(n \ge 1\),

$$\begin{aligned}&u (x) = u_n(x) \text{ for } x \le x_{n+1}, \end{aligned}$$
(A5)
$$\begin{aligned}&u \text{ is } \text{ constant } \text{ in } (x_n + T_n, x_{n+1}), \end{aligned}$$
(A6)
$$\begin{aligned}&u(1) - u(x_n) \le \sum _{k \ge n} \delta _k < 2 \delta _n, \end{aligned}$$
(A7)

since \(\delta _k < \delta _{k-1}/ 8\). We have

$$\begin{aligned} \Lambda _{2\delta _{n}}(u) =&\; \int _0^1 \int _0^1 \frac{\varphi _{2\delta _n}(|u(x) - u(y)|)}{|x-y|^2} \, dx \, dy\\ =&\; \int _0^{x_n} \int _0^{x_n} \cdots + \int _{x_n}^1 \int _{x_n}^1 \cdots + 2 \int _0^{x_n} \int _{x_n}^{1} \cdots \quad \text{ where } \cdots \\&= \frac{\varphi _{2\delta _n}(|u(x) - u(y)|)}{|x-y|^2}. \end{aligned}$$

It is clear that

$$\begin{aligned}&\int _0^{x_n} \int _0^{x_n} \cdots \; \; \mathop {\le }^{\mathrm { by } \; \mathrm{(A5)}} \; \; \Lambda _{2\delta _n}(u_{n-1}),\\&\int _{x_n}^1 \int _{x_n}^1 \cdots \; \; \mathop {=}^{\mathrm { by } \; \mathrm{(A7)}} \; \; 0, \end{aligned}$$

and

$$\begin{aligned} 2 \int _0^{x_n} \int _{x_n}^{1} \cdots \; \; \mathop {\le }^{\mathrm { by } \; \mathrm{(A.7)}} \; \; \int _{0}^{x_{n-1} + T_{n-1}} \, dx \int _{x_n}^1 \frac{2\delta _n c_1}{|x-y|^2} \, dy, \end{aligned}$$

since u is constant in \([x_{n-1} + T_{n-1}, x_n]\). It follows from (A3) that

$$\begin{aligned} \Lambda _{2\delta _{n}}(u) \le \int _0^1 |u_{n-1}'| + 1/ n. \end{aligned}$$
(A8)

On the other hand, from (A4), (A5), and the definition of \(w_n\), we have, for \(n \ge 1\),

$$\begin{aligned} \Lambda _{\delta _n/ 3}(u)\ge & {} \int _{x_n}^{y_n - t_n} \, dx \int _{y_n + t_n}^{x_n + T_n} \frac{\varphi _{\delta _n/3}(|u(x) - u(y)|)}{|x-y|^2} \, dy\nonumber \\= & {} \int _{x_n}^{y_n - t_n} \, dx \int _{y_n + t_n}^{x_n + T_n} \frac{\varphi _{\delta _n/3}(|w_n(x) - w_n(y)|)}{|x-y|^2} \, dy \nonumber \\\ge & {} \int _{x_n}^{y_n - t_n} \, dx \int _{y_n + t_n}^{x_n + T_n} \frac{c_1 \delta _n / 3}{|x - y|^2} \, dy \ge c_1 n / 3. \end{aligned}$$
(A9)

Combining (A8) and (A9) and noting that \(u_n \rightarrow u\) in \(W^{1, 1}(0, 1)\), we obtain the conclusion. \(\square \)

Appendix: Proof of Pathology 3

We first establish (2.41) for \(\varphi = c_1 \tilde{\varphi } _1\) where \(c_1 = 1/ 2\) is the normalization constant.

Let \(c \ge 5\) and for each \(k \in \mathbb {N}\) (\(k \ge 4\)) define a non-decreasing continuous function \(v_{k}: [0, 1] \mapsto [0, 1]\) with \(v_k(1) = 1\) as follows

$$\begin{aligned} v_{k} (x) = \left\{ \begin{array}{ll} i/k &{} \text{ for } x \in [i/ k, (i+1)/ k - 1/(ck)] \quad \forall \, i = 0, \cdots , k-1, \\ \text{ affine } &{} \text{ for } x \in [(i+1)/ k - 1/(ck), (i+1)/ k] \quad \forall \, i = 0, \cdots , k-1. \end{array}\right. \end{aligned}$$
(B1)

Clearly,

$$\begin{aligned} \text{ if } |v_k(x) - v_k(y)|> 1/k \text{ then } |x - y | > 1/k. \end{aligned}$$
(B2)

Define

$$\begin{aligned} V_k(x): = \lim _{c \rightarrow + \infty } v_k(x) \quad \text{ for } x \in [0, 1]. \end{aligned}$$

Since \(c_1 = 1/2\), one can show that (see [43, page 683])

$$\begin{aligned} A_0&: =&\limsup _{k \rightarrow \infty } \Lambda _{1/k} (V_k) = \limsup _{k \rightarrow \infty } \frac{1}{k} \sum _{i=0}^{k - 2} \int _{i/k}^{(i+1)/k} \, dx\\&\quad \times \int _{(i+2)/k}^1 \frac{1}{|x - y|^2} \, dy < 1 =\lim _{\delta \rightarrow 0} \Lambda _\delta (x, [0, 1]). \end{aligned}$$

Since, for \(c \ge 2\),

$$\begin{aligned}&\frac{1}{k} \sum _{i=0}^{k - 2} \int _{i/k}^{(i+1)/k} \, dx \int _{(i+2)/k -1/(ck)}^{(i+2)/k} \frac{1}{|x - y|^2} \, dy \\&\quad \le \frac{k-1}{k} \frac{1}{k}\frac{1}{ck} \Big ( \frac{1}{k} - \frac{1}{ck}\Big )^{-2} \le \frac{1}{c} \Big (1 - \frac{1}{c}\Big )^{-2} \le \frac{4}{c}, \end{aligned}$$

it follows that, for sufficiently large c,

$$\begin{aligned} \limsup _{k \rightarrow \infty } \frac{1}{k} \sum _{i=0}^{k - 2} \int _{i/k}^{(i+1)/k} \, dx \int _{(i+2)/k -1/(ck)}^1 \frac{1}{|x - y|^2} \, dy \le \frac{A_0 + 1}{2} <1. \end{aligned}$$
(B3)

Fix such a constant c. We are now going to define by induction a sequence of \(u_n: [0, 1] \mapsto [0, 1]\). Set

$$\begin{aligned} u_0 = v_{4}. \end{aligned}$$

Assume that \(u_{n-1}\) (\(n \ge 1\)) is defined and satisfies the following properties:

$$\begin{aligned} u_{n-1} \text{ is } \text{ non-decreasing, } \text{ continuous, } \text{ and } \text{ piecewise } \text{ affine, } \quad u_{n-1}(0) = 0, \end{aligned}$$
(B4)

and there exists a partition \(0 = t_{0, n-1}< t_{1, n-1}< \cdots < t_{2 l_{n-1}, n-1} = 1\) such that, with the notation \(J_{i, n-1} = [t_{i, n-1}, t_{i+1, n-1}]\), the following four properties hold:

$$\begin{aligned}&u_{n-1} \text{ is } \text{ constant } \text{ on } J_{2i, n-1} \quad \text{ for } i=0, \cdots , l_{n-1}-1, \end{aligned}$$
(B5)
$$\begin{aligned}&u_{n-1} \text{ is } \text{ affine } \text{ and } \text{ not } \text{ constant } \text{ on } J_{2i+1, n-1} \quad \text{ for } i =0, \cdots , l_{n-1}-1, \end{aligned}$$
(B6)

the total variation of \(u_{n-1}\) on the interval \(J_{i, n-1}\) with i odd (where \(u_{n-1}\) is not constant) is always \(1/ l_{n-1}\), i.e.,

$$\begin{aligned} u_{n-1}(t_{2i + 2, n-1}) - u_{n-1}( t_{2i+1, n-1} ) = 1/ l_{n-1} \quad \text{ for } i =0, \cdots , l_{n-1}-1, \end{aligned}$$
(B7)

and the intervals \(J_{i, n-1}\) with i odd have the same length which is less than the one of any interval \(J_{i, n-1}\) with i even, i.e.,

$$\begin{aligned} |J_{1, n-1}| = |J_{3, n-1}| = \cdots = |J_{2l_{n-1}-1, n-1}| < |J_{2i, n-1}| \quad \text{ for } i = 0, \cdots , l_{n-1}-1. \end{aligned}$$
(B8)

Since \(u_{n-1} (0) = 0\), it follows from the properties of \(u_{n-1}\) in (B5) and (B6) that

$$\begin{aligned} u_{n-1}(t) = s/ l_{n-1} + i/ l_{n-1} \text{ for } t \in J_{2i+1, n-1} \text{ where } s = (t - t_{2i +1, n-1}) / |J_{2i + 1, n-1}|. \end{aligned}$$
(B9)

Set

$$\begin{aligned} B_{n-1} = \bigcup _{i=0}^{l_{n-1}-1} J_{2i, n-1} \end{aligned}$$
(B10)

(\(B_{n-1}\) is the union of all intervals on which \(u_{n-1}\) is constant). For \(n \in \mathbb {N}\), let \(k_n\) be a sufficient large integer such that

$$\begin{aligned} \frac{1}{k_n} \int _{-1}^0 \, dx \int _{\tau _n}^1 \frac{1}{|x-y|^2} \, dy < \frac{1}{n} \quad \text{ where } \quad \tau _n = |J_{1, n-1}| / k_n \end{aligned}$$
(B11)

and

$$\begin{aligned} \frac{1}{k_n} \sum _{i=0}^{k_n - 2} \int _{i/k_n}^{(i+1)/k_n} \, dx \int _{(i+2)/k_n -1/(ck_n)}^1 \frac{1}{|x - y|^2} \, dy \le \frac{A_0+1}{2}. \end{aligned}$$
(B12)

Since, for a small positive number \(\tau \),

$$\begin{aligned} \int _{-1}^0 \, dx \int _{\tau }^1 \frac{1}{|x-y|^2} \, dy \le |\ln \tau |, \end{aligned}$$

such a constant \(k_n\) exists by (B3). Define

$$\begin{aligned} u_n (t) = \left\{ \begin{array}{ll} u_{n-1}(t) &{} \text{ if } t \in B_{n-1}, \\ \displaystyle \frac{1}{l_{n-1}}v_{k_n} (s) + \frac{i}{l_{n-1}}&{} \text{ if } t \in J_{2i + 1, n-1} \text{ for } \text{ some } 0 \le i \le l_{n-1} -1, \end{array}\right. \end{aligned}$$
(B13)

where \(s = (t - t_{2i +1, n-1}) / |J_{2i + 1, n-1}|\). Then \(u_n\) satisfies (B4)-(B8) for some \(l_n\) and \(t_{i, n}\). Since \(0 \le v_k(x) \le x\) for \(x \in [0, 1]\), we deduce from (B9) and the definition of \(u_{n}\) that \(u_n \le u_{n-1}\). On the other hand, we derive from (B9) and (B13) that, for \(m\ge n\),

$$\begin{aligned} \Vert u_m - u_n \Vert _{L^\infty (0, 1)} \le 1/ l_n. \end{aligned}$$

Hence the sequence \((u_n)\) is Cauchy in C([0, 1]). Let u be the limit and set

$$\begin{aligned} \delta _n = 1/ (l_{n-1} k_n). \end{aligned}$$
(B14)

It follows from the definition of \(u_n\) and u that

$$\begin{aligned} u(t) = u_n(t) \text{ for } t = t_{i, n-1} \text{ with } 0 \le i \le 2 l_{n-1}. \end{aligned}$$
(B15)

From the construction of \(u_n\) in (B13), the property of \(v_k\) in (B2), and (B8), we derive that

$$\begin{aligned} \text{ if } | u(x) - u(y)|> \delta _n, \text{ then } |x - y| > \tau _n, \end{aligned}$$
(B16)

where \(\tau _n\) is defined in (B11). Since \(u_{n-1}\) is constant in \(J_{2i, n-1}\) for \(0 \le i \le l_{n-1} - 1\) by (B5), it follows from (B13) that u is constant in \(J_{2i, n-1}\) for \(0 \le i \le l_{n-1} - 1\). We derive that

$$\begin{aligned}&\mathop {\int _0^1 \int _0^1}_{|u(x) - u(y)|> \delta _n} \frac{\delta _n}{|x - y|^2} \, dx \, dy \le \sum _{i=0}^{l_{n-1} - 1} \mathop {\iint _{J_{2i+1, n-1}^2}}_{|u(x) - u(y)|> \delta _n} \frac{\delta _n}{|x - y|^2} dx \, dy \nonumber \\&\quad + \sum _{i=0}^{2l_{n-1}-1} \mathop {\int _{J_{i, n-1}} \, dx \int _{[0, 1] {\setminus } J_{i, n-1}}}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2 } \, dy. \end{aligned}$$
(B17)

Using (B16), we have, by (B11),

$$\begin{aligned} \sum _{i=0}^{2l_{n-1}-1} \mathop {\int _{J_{i, n-1}} \, dx \int _{[0, 1] {\setminus } J_{i, n-1}}}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2 } \, dy \le 4 l_{n-1} \int _{-1}^0 \, dx \int _{\tau _n}^1 \frac{ \delta _n }{|x-y|^2} \, dy \le 4/ n. \end{aligned}$$
(B18)

We now estimate, for \(0 \le i \le l_{n-1} - 1\),

$$\begin{aligned} \mathop {\iint _{J_{2i+1, n-1}^2}}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2} dx \, dy. \end{aligned}$$

Define \(g_i : J_{2i + 1, n-1} \rightarrow [0, 1]\), for \(0 \le i \le l_{n-1} - 1\), as follows

$$\begin{aligned} g_i(x) = (x - t_{2i +1, n-1}) / |J_{2i + 1, n-1}| \quad \text{ for } x \in J_{2i + 1, n-1}. \end{aligned}$$

We claim that, for \(0 \le i \le l_{n-1} - 1\),

$$\begin{aligned} \text{ if } (x, y) \in J_{2i +1, n-1}^2, \quad |u(x) - u(y)| > \delta _n, \quad g_i(x) \in [i/ k_{n}, (i+1)/ k_n], \quad \text{ and } \quad x < y, \end{aligned}$$

then

$$\begin{aligned} g_i(y) \in \big [(i+2)/ k_n - 1/ (c k_n), 1\big ]. \end{aligned}$$

In fact, if \(g_i(z) \in [i/ k_{n}, (i+2)/ k_n - 1 / (c k_n)]\) then

$$\begin{aligned} u_n \left( g_i^{-1}\Big (\frac{i}{k_n} \Big ) \right)= & {} u \left( g_i^{-1}\Big (\frac{i}{k_n} \Big ) \right) \le u(z) \le u \left( g_i^{-1}\Big ( \frac{i+2}{k_n} - \frac{1}{c k_n} \Big ) \right) \\= & {} u \left( g_i^{-1}\Big ( \frac{i+2}{k_n} - \frac{1}{c k_n} \Big ) \right) . \end{aligned}$$

Here we used (B15) and the fact that u is non-decreasing. It follows from the definition of \(u_n\) that, if \(g_i(x), g_i(y) \in [i/ k_{n}, (i+2)/ k_n - 1 / (c k_n)]\) then

$$\begin{aligned} |u(y) - u(x)| \le \frac{1}{l_{n-1}} \left| v_{k_n} \Big ( \frac{i+2}{k_n} - \frac{1}{c k_n} \Big ) - v_{k_{n}} \Big ( \frac{i}{k_n} \Big ) \right| \le \frac{1}{k_n l_{n-1}} = \delta _n. \end{aligned}$$

The claim is proved.

By a change of variables, for \(i=0, \cdots , 2 l_{n-1} -1\),

$$\begin{aligned} (x, y) \mapsto \Big (g_i(x), g_i(y) \Big ) \text{ for } (x , y) \in J_{2i+1, n-1}^2, \end{aligned}$$

we deduce from the claim that

$$\begin{aligned}&\sum _{i=0}^{l_{n-1} - 1} \mathop {\iint _{J_{2i+1, n-1}^2}}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2} dx \, dy \\&\quad \le 2 l_{n-1} \delta _n \sum _{j=0}^{k_n - 2} \int _{j/k_n}^{(j+1)/k_n} \, dx \int _{(j+2)/k_n -1/(ck_n)}^1 \frac{1}{|x - y|^2} \, dy. \end{aligned}$$

It follows from (B12) and (B14) that

$$\begin{aligned} \sum _{i=0}^{l_{n-1} - 1} \mathop {\iint _{J_{2i+1, n-1}^2}}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2} dx \, dy \le A_0 + 1. \end{aligned}$$
(B19)

Combining (B17), (B18), and (B19) yields

$$\begin{aligned} \limsup _{n \rightarrow \infty } \mathop {\int _0^1 \int _0^1}_{|u(x) - u(y)| > \delta _n} \frac{\delta _n}{|x - y|^2} \, dx \, dy \le A_0 + 1. \end{aligned}$$

Since \(c_1 = 1/2\), we have, for \(\varphi = c_1 \tilde{\varphi } _1\),

$$\begin{aligned} \limsup _{n \rightarrow \infty } \Lambda _{\delta _n}(u) \le (A_0 + 1)/ 2 < 1. \end{aligned}$$
(B20)

Note that \(u \in C([0, 1])\) is non-decreasing and \(u(0) =0\) and \(u(1) = 1\). This implies

$$\begin{aligned} \int _0^1|u'| = 1. \end{aligned}$$

Therefore (2.41) holds for \(\varphi = c_1 \tilde{\varphi } _1\) and u.

We next construct a continuous function \(\varphi _\ell \) which is “close” to \(c_1 \tilde{\varphi } _1\) such that (2.41) holds for \(\varphi _\ell \) and the function u constructed above. For \(\ell \ge 1\), define a continuous function \(\varphi _\ell : [0 , + \infty ) \mapsto \mathbb {R}\) by

$$\begin{aligned} \varphi _\ell (t) = \left\{ \begin{array}{ll} \alpha _\ell &{} \text{ if } t \ge 1 + 1/ \ell , \\ 0 &{} \text{ if } t \le 1, \\ \text{ affine } &{} \text{ if } t \in [1, 1 + 1/ \ell ], \end{array}\right. \end{aligned}$$

where \(\alpha _\ell \) is the constant such that

$$\begin{aligned} \gamma _{1} \int _0^\infty \varphi _\ell (t) t^{-2} \, dt = 2 \int _0^\infty \varphi _\ell (t) t^{-2} \, dt = 1. \end{aligned}$$

Then \(\varphi _{\ell } \in \mathcal{A}\). Moreover, \(\varphi _\ell (t) \le \alpha _\ell \tilde{\varphi } _1 (\beta _\ell t)\) where \(\beta _\ell = 1 + 1/\ell \). It follows from (B20) that

$$\begin{aligned}&\liminf _{\delta \rightarrow 0} \int _{0}^1 \int _{0}^1 \frac{\beta _\ell \delta \varphi _\ell (|u(x) - u(y)| / (\beta _\ell \delta ) ) }{|x-y|^{2}} \, dx \, dy \\&\quad \le \liminf _{\delta \rightarrow 0} \int _{0}^1 \int _{0}^1 \frac{\alpha _\ell \beta _\ell \delta \tilde{\varphi } _1 \Big (|u(x) - u(y)| \big / \delta \Big ) }{|x-y|^{2}} \, dx \, dy \le a_\ell \beta _\ell (A_0 + 1). \end{aligned}$$

Since \(a_\ell \rightarrow c_1 = 1/2\) and \(\beta _\ell \rightarrow 1\) as \(\ell \rightarrow +\infty \), the conclusion holds for \(\varphi _\ell \) when \(\ell \) is large. The proof is complete. \(\square \)

Appendix: Pointwise Convergence of \(\Lambda _{\delta }(u)\) When \(u \in W^{1, p}(\Omega )\)

In this section, we prove the following result

Proposition C1

Let \(d \ge 1\), \(\Omega \) be a smooth bounded open subset of \(\mathbb {R}^d\), and \(\varphi \in \mathcal{A}\). We have

$$\begin{aligned} \lim _{\delta \rightarrow 0} \Lambda _{\delta } (u) = \int _{\Omega } |\nabla u| \text{ for } u \in \bigcup _{p> 1} W^{1, p}(\Omega ) \end{aligned}$$

Proof

We already know by Proposition 1 that

$$\begin{aligned} \liminf _{\delta \rightarrow 0} \Lambda _{\delta } (u) \ge \int _{\Omega } |\nabla u| \quad \forall \, u \in W^{1, 1}(\Omega ). \end{aligned}$$
(C1)

Assume now that \(u \in W^{1, p}(\Omega )\) for some \(p>1\). We are going to prove that

$$\begin{aligned} \limsup _{\delta \rightarrow 0} \Lambda _{\delta } (u) \le \int _{\Omega } |\nabla u|. \end{aligned}$$
(C2)

Consider an extension of u to \(\mathbb {R}^d\) which belongs to \(W^{1, p}(\mathbb {R}^d)\). For simplicity, we still denote the extension by u.

Clearly

$$\begin{aligned} \Lambda _{\delta }(u) \le \int _{\Omega } dx \int _{\mathbb {R}^d} \frac{\varphi _\delta (|u(x) - u(y)|)}{|x - y|^{d+1}} \, dy, \end{aligned}$$

and thus it suffices to establish that

$$\begin{aligned} \lim _{\delta \rightarrow 0} \int _{\Omega } dx \int _{\mathbb {R}^d} \frac{\varphi _\delta (|u(x) - u(y)|)}{|x - y|^{d+1}} \, dy = \int _{\Omega } |\nabla u| \, dx. \end{aligned}$$
(C3)

Using polar coordinates and a change of variables, we have, as in (2.10),

$$\begin{aligned}&\int _{\Omega } \, d x \int _{\mathbb {R}^d} \frac{\varphi _\delta (|u(x) - u(y)|) }{|x - y|^{ d + 1}} \, dy \nonumber \\&\quad = \int _{\Omega } \, dx \int _{0}^{\infty } \, d h \int _{\mathbb {S}^{d-1}} \frac{1}{h^2}\varphi \Big (|u(x + \delta h \sigma ) - u(x)| \big / \delta \Big ) \, d \sigma . \end{aligned}$$
(C4)

As in (2.12), we also obtain

$$\begin{aligned}&\lim _{\delta \rightarrow 0}\frac{1}{h^{2}} \varphi \Big (|u(x + \delta h \sigma ) - u(x)| \big / \delta \Big ) = \frac{1}{h^{2}}\varphi \Big (|\nabla u(x) \cdot \sigma | h \Big ) \nonumber \\&\quad \text{ for } \text{ a.e. } (x, \, h, \, \sigma ) \in \Omega \times (0, + \infty ) \times \mathbb {S}^{d-1}. \end{aligned}$$
(C5)

As in (2.15), we have

$$\begin{aligned} \int _{\Omega } \, dx \int _{0}^\infty \, d h \int _{\mathbb {S}^{d-1}} \frac{1}{h^{2}} \varphi \Big ( |\nabla u (x) \cdot \sigma | h\Big ) \, d \sigma = \int _{\Omega } |\nabla u| \, dx. \end{aligned}$$
(C6)

On the other hand, since \(\varphi \) is non-decreasing, it follows that, for \(\delta >0\),

$$\begin{aligned}&\frac{1}{h^2}\varphi \big (|u(x + \delta h \sigma ) - u(x)| / \delta \big ) \le \frac{1}{h^2} \varphi \big (M_{\sigma } (\nabla u) (x) h \big )\nonumber \\&\qquad \qquad \text{ for } \text{ a.e. } (x, \, h, \, \sigma ) \in \mathbb {R}^d \times (0, + \infty ) \times \mathbb {S}^{d-1}, \end{aligned}$$
(C7)

where

$$\begin{aligned} M_{\sigma } (\nabla u)(x): = \sup _{\tau > 0} \int _{0}^1 |\nabla u(x + s \tau \sigma ) \cdot \sigma | \, ds \quad \text{ for } x \in \mathbb {R}^d. \end{aligned}$$
(C8)

Indeed, we have

$$\begin{aligned} |u(x + \delta h \sigma ) - u(x)| / \delta \le \int _0^1 h |\nabla u(x + s \delta h \sigma ) \cdot \sigma | \, ds \le h \sup _{\tau > 0} \int _0^1 h |\nabla u(x + s \tau \sigma ) \cdot \sigma | \, ds. \end{aligned}$$

We claim that

$$\begin{aligned} \frac{1}{h^2} \varphi \big ( M_\sigma (\nabla u)(x) h \big ) \,d x \in L^1 \big (\Omega \times (0, + \infty ) \times \mathbb {S}^{d-1} \big ). \end{aligned}$$
(C9)

Assuming (C9), we may then apply the dominated convergence theorem using (C4), (C5), (C6), (C7), and (C9), and conclude that (C3) holds.

To show (C9), it suffices to prove that, for all \(\sigma \in \mathbb {S}^{d-1}\),

$$\begin{aligned} \int _{\Omega } dx \int _{0}^{\infty } \frac{1}{h^2} \varphi \big ( M_\sigma (\nabla u)(x) h \big ) \,d h \le C \Big (\int _{\mathbb {R}^d} |\nabla u|^p \Big )^{1/p}. \end{aligned}$$
(C10)

Here and in what follows C denotes a positive constant independent of u and \(\delta \); it depends only on \(\Omega \) and p. For simplicity of notation, we assume that \(\sigma = e_{d}: = (0, \cdots , 0, 1 )\). By a change of variables, we have

$$\begin{aligned} \int _{\Omega } dx \int _{0}^{\infty } \frac{1}{h^2} \varphi \big ( M_{e_d}(\nabla u)(x) h \big ) \,d h&= \int _{\Omega } \big |M_{e_d} (\nabla u) (x)\big | \, d x \int _0^\infty \varphi (t) t^{-2} \, d t \nonumber \\&= \gamma _d^{-1} \int _{\Omega } \big |M_{e_d} (\nabla u) (x)\big | \, d x \nonumber \\&\le C\Big ( \int _{\Omega } \big |M_{e_d} (\nabla u) (x)\big |^p \, d x \Big )^{1/p}. \end{aligned}$$
(C11)

Note that

$$\begin{aligned} M_{e_d}(\nabla u)(x) = \sup _{\tau> 0} \int _{0}^1 |\partial _{x_d} u(x', x_d + s \tau )| \, ds = \sup _{\tau > 0} \fint _{x_d}^{x_d +\tau } |\partial _{x_d} u(x', s)| \, ds. \end{aligned}$$

We have

$$\begin{aligned} \int _{\Omega } \big |M_{e_d} (\nabla u) (x)\big |^p \, dx\le & {} \int _{\mathbb {R}^d} \big |M_{e_d} (\nabla u) (x)|^p \, dx \nonumber \\= & {} \int _{\mathbb {R}^{d-1}} \, d x' \int _{\mathbb {R}} \big |M_{e_d} (\nabla u) (x', x_d) \big |^p \, dx_d. \end{aligned}$$
(C12)

Since, by the theory of maximal functions in one dimension,

$$\begin{aligned} \int _{\mathbb {R}} \big |M_{e_d} (\nabla u) (x', x_d) \big |^p \, dx_d \le C \int _{\mathbb {R}} |\partial _{x_d} u (x', x_d)|^p \, dx_d, \end{aligned}$$

it follows from (C12) that

$$\begin{aligned} \int _{\Omega } \big |M_{e_d} (\nabla u) (x)\big |^p \, dx \le C \int _{\mathbb {R}^{d} } |\nabla u (x)|^p \, dx. \end{aligned}$$
(C13)

Combining (C11) and (C13) implies (C10) for \(\sigma = e_d\). The proof is complete. \(\square \)

Remark 10

The above proof shows that

$$\begin{aligned} \Lambda _\delta (u) \le C_p \Vert \nabla u\Vert _{L^p(\Omega )} \quad \forall \, u \in W^{1, p}(\Omega ). \end{aligned}$$

The idea of using the theory of maximal functions to derive a similar estimate (in a slightly different context but still for \(\varphi = c_1 \tilde{\varphi } _1\)) is originally due to A. Ponce and J. Van Schaftingen [51]; see also H.-M. Nguyen [42].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brezis, H., Nguyen, HM. Non-local Functionals Related to the Total Variation and Connections with Image Processing. Ann. PDE 4, 9 (2018). https://doi.org/10.1007/s40818-018-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40818-018-0044-1

Keywords

Mathematics Subject Classification