Abstract
This study focused on an industrial area, i.e., Champagne-Ardenne, France, containing 25 wind turbines with a lifespan of 25 years. We assessed the economic situation from the beginning of the operation of this plant to the end of its lifetime using the levelized cost of energy (LCOE) indicator, which assesses the average cost of energy production during a project. We also considered the environmental cost associated with the wind sector. The objective of this study was to explore the effects of all parameters, including the calculation of the LCOE indicator, to provide decision-makers and local authorities with optimization solutions. We also developed an optimization algorithm to provide the best combination of all LCOE parameters for producing sustainable energy at the lowest cost.




Similar content being viewed by others
Change history
27 December 2021
A Correction to this paper has been published: https://doi.org/10.1007/s40095-021-00469-y
References
Hoogwijk, M., De Vries, B., Turkenburg, W.: Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energy Econom. 26(5), 889–919 (2004)
Agency, I. E.: «Projected costs of generating electricity» (2015)
Gifford, J. S., Grace et, R. C., Rickerson, W. H.: «Renewable energy cost modeling : A toolkit for establishing cost-based incentives in the united states; march 2010–march 2011», cahier de recherche, National Renewable Energy Laboratory (NREL), Golden, CO (2011)
Short, W., Packey et D. J., Holt, T.: «A manual for the economic evaluation of energy efficiency and renewable energy technologies», cahier de recherche, National Renewable Energy Lab., Golden, CO (United States) (1995)
Adaramola, M., Paul, S., Oyedepo, S.: Assessment of electricity generation and energy cost of wind energy conversion systems in north-central nigeria. Energy Conv. Manag. 52(12), 3363–3368 (2011)
Miller, L., Carriveau, R., Harper, S., Singh, S.: Evaluating the link between lcoe and ppa elements and structure for wind energy. Energy Strategy Rev. 16, 33–42 (2017)
Tazi, N., Châtelet, E., Meziane et R., Bouzidi Y.: Reliability optimization of wind farms considering constraints and regulations, dans Renewable Energy Research and Applications (ICRERA), 2016 IEEE International Conference on, IEEE, pp. 130–136 (2016)
Staffell, I., Green, R.: How does wind farmperformance decline with age? Renew. Energy 66, 775–786 (2014)
De Roo, G., Parsons, J.E.: A methodology for calculating the levelized cost of electricity in nuclear power systems with fuel recycling. Energy Econom. 33(5), 826–839 (2011)
Lucheroni, C., Mari, C.: Co2 volatility impact on energy portfolio choice: a fully stochastic lcoe theory analysis. Appl. Energy 190, 278–290 (2017)
Riesz, J., Sotiriadis, C., Vithayasrichareon, P., Gilmore, J.: Quantifying key uncertainties in the costs of nuclear power. Int. J. Energy Res. 41(3), 389–409 (2017)
Richards, J., Sabharwall, P., Memmott, M.: Economic comparison of current electricity generating technologies and advanced nuclear options. Electr. J. 30(10), 73–79 (2017)
Mondol, J.D., Carr, C.: Techno-economic assessments of advanced combined cycle gas turbine (ccgt) technology for the new electricity market in the united arab emirates. Sustain. Energy Technol. Assess. 19, 160–172 (2017)
Rubin, E.S., Zhai, H.: The cost of carbon capture and storage for natural gas combined cycle power plants. Environ. Sci. Technol. 46(6), 3076–3084 (2012)
Orbaiz, P.J., Brear, M.J.: A technical and financial analysis of two recuperated, reciprocating engine driven power plants. Part 2: Financial analysis. Energy Convers. Manag. 80, 609–615 (2014)
O’shea, R., Wall, D.M., Kilgallon, I., Browne, J.D., Murphy, J.D.: Assessing the total theoretical, and financially viable, resource of biomethane for injection to a natural gas network in a region. Appl. Energy 188, 237–256 (2017)
Pihl, E., Heyne, S., Thunman, H., Johnsson, F.: Highly efficient electricity generation from biomass by integration and hybridization with combined cycle gas turbine (ccgt) plants for natural gas. Energy 35(10), 4042–4052 (2010)
Geissmann, T.: A probabilistic approach to the computation of the levelized cost of electricity. Energy 124, 372–381 (2017)
Merkel, T.C., Zhou, M., Baker, R.W.: Carbon dioxide capture with membranes at an igcc power plant. J. Membrane Sci. 389, 441–450 (2012)
Pettinau, A., Ferrara, F., Tola, V., Cau, G.: Techno-economic comparison between different technologies for co2-free power generation from coal. Appl. Energy 193, 426–439 (2017)
Zhao, C., Zhang, W., Wang, Y., Liu, Q., Guo, J., Xiong, M., Yuan, J.: The economics of coal power generation in China. Energy Policy 105, 1–9 (2017)
Breyer, C., Gerlach, A.: Global overview on grid-parity. Progress Photovoltaics Res. Appl. 21(1), 121–136 (2013)
Montes, M., Abánades, A., Martinez-Val, J., Valdés, M.: Solar multiple optimization for a solar-only thermal power plant, using oil as heat transfer fluid in the parabolic trough collectors. Solar Energy 83(12), 2165–2176 (2009)
Limmanee, A., Songtrai, S., Udomdachanut, N., Kaewniyompanit, S., Sato, Y., Nakaishi, M., Kittisontirak, S., Sriprapha, K., Sakamoto, Y.: Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on lcoe. Renew. Energy 102, 199–204 (2017)
Ma, Y., Zhang, X., Liu, M., Yan, J., Liu, J.: Proposal and assessment of a novel supercritical co2 brayton cycle integrated with libr absorption chiller for concentrated solar power applications. Energy (2018). https://doi.org/10.1016/j.energy.2018.01.155. (ISSN 0360-5442)
Hernández-Moro, J., Martínez-Duart, J.: Analytical model for solar pv and csp electricity costs : present lcoe values and their future evolution. Renew. Sustain. Energy Rev. 20, 119–132 (2013)
Bortolini, M., Gamberi, M., GrazianI, A.: Technical and economic design of photovoltaic and battery energy storage system. Energy Convers. Manag. 86, 81–92 (2014)
Guo, P., Zhai, Y., Xu, X., Li, J.: Assessment of levelized cost of electricity for a 10-mw solar chimney power plant in yinchuan China. Energy Convers. Manag. 152, 176–185 (2017)
Wagner, S.J., Rubin, E.S.: Economic implications of thermal energy storage for concentrated solar thermal power. Renew. Energy 61, 81–95 (2014)
Barbosa, L.D.S.N.S., Bogdanov, D., Vainikka, P., Breyer, C.: Hydro, wind and solar power as a base for a 100% renewable energy supply for south and central america. PloS one 12(3), e0173820 (2017)
Dowling, A.W., Zheng, T., Zavala, V.M.: Economic assessment of concentrated solar power technologies : A review. Renew. Sustain. Energy Rev. 72, 1019–1032 (2017)
Dufo-López, R., Bernal-Agustín, J.L., Yusta-Loyo, J.M., Domínguez-Navarro, J.A., Ramírez-Rosado, I.J., Lujano, J., Aso, I.: Multi-objective optimization minimizing cost and life cycle emissions of stand-alone pv–wind–diesel systems with batteries storage. Appl. Energy 88(11), 4033–4041 (2011)
Koutroulis, E., Blaabjerg, F.: Design optimization of transformerless grid-connected pv inverters including reliability. IEEE Trans. Power Electron. 28(1), 325–335 (2013)
Lai, C.S., Mcculloch, M.D.: Levelized cost of electricity for solar photovoltaic and electrical energy storage. Appl. Energy 190, 191–203 (2017)
Sharma, C., Sharma, A.K., Mullick, S.C., Kandpal, T.C.: Solar thermal power generation in india: effect of potential incentives on unit cost of electricity. Int. J. Sustain. Energy 36(8), 722–737 (2017)
Zhang, H., Baeyens, J., Caceres, G., Degreve, J., Lv, Y.: Thermal energy storage : recent developments and practical aspects. Progress Energy Combustion Sci. 53, 1–40 (2016)
Cai, M., Wu, Y., Chen, H., Yang, X., Qiang, Y., Han, L.: Cost-performance analysis of perovskite solar modules, Advanced Science, 4(1) (2017)
Cucchiella, F., D’Adamo, I., Gastaldi, M.: Economic analysis of a photovoltaic system: a resource for residential households. Energies 10(6), 814 (2017)
Krebs, F.C., Tromholt, T., Jørgensen, M.: Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2(6), 873–886 (2010)
Mulligan, C.J., Bilen, C., Zhou, X., Belcher, W.J., Dastoor, P.C.: Levelised cost of electricity for organic photovoltaics. Solar Energy Mater. Solar Cells 133, 26–31 (2015)
Song, Z., Mcelvany, C.L., Phillips, A.B., Celik, I., Krantz, P.W., Watthage, S.C., Liyanage, G.K., Apul, D., Heben, M.J.: A technoeconomic analysis of perovskite solar modulemanufacturing with low-cost materials and techniques. Energy Environ. Sci. 10(6), 1297–1305 (2017)
Watts, D., Valdés, M.F., Jara, D., Watson, A.: Potential residential pv development in chile: the effect of net metering and net billing schemes for grid-connected pv systems. Renew. Sustain. Energy Rev. 41, 1037–1051 (2015)
Bruck, M., Sandborn, P., Goudarzi, N.: A levelized cost of energy (lcoe) model for wind farms that include power purchase agreements (ppas). Renew. Energy 122, 131–139 (2018)
Hou, P., Enevoldsen, P., Hu, W., Chen, C., Chen, Z.: Offshore wind farm repowering optimization. Appl. Energy 208, 834–844 (2017)
Jesus, F., Guanche, R., Losada, Í.J.: The impact of wind resource spatial variability on floating offshore wind farms finance. Wind Energy 20(7), 1131–1143 (2017)
Poulsen, T., Hasager, C.B.: How expensive is expensive enough? Opportunities for cost reductions in offshore wind energy logistics. Energies 9(6), 437 (2016)
Poulsen, T., Hasager, C.B., Jensen, C.M.: The role of logistics in practical levelized cost of energy reduction implementation and government sponsored cost reduction studies: day and night in offshore wind operations and maintenance logistics. Energies 10(4), 464 (2017)
Abdelhady, S., Borello, D., Shaban, A.: Assessment of levelized cost of electricity of offshore wind energy in egypt. Wind Eng. 41(3), 160–173 (2017)
Astariz, S., Perez-Collazo, C., Abanades, J., Iglesias, G.: Co-located wave-wind farms : economic assessment as a function of layout. Renew. Energy 83, 837–849 (2015)
Bishop, J.D., Amaratunga, G.A.: Evaluation of small wind turbines in distributed arrangement as sustainable wind energy option for barbados. Energy Convers. Manag. 49(6), 1652–1661 (2008)
Chiang, A.C., Keoleian, G.A., Moore, M.R., Kelly, J.C.: Investment cost and view damage cost of siting an offshore wind farm: a spatial analysis of lake michigan. Renew. Energy 96, 966–976 (2016)
Gökçek, M., Genç, M.S.: Evaluation of electricity generation and energy cost of wind energy conversion systems (wecss) in central Turkey. Appl. Energy 86(12), 2731–2739 (2009)
Mattar, C., Guzmán-Ibarra, M.C.: A techno-economic assessment of offshore wind energy in chile. Energy 133, 191–205 (2017)
Myhr, A., Bjerkseter, C., Ågotnes, A., Nygaard, T.A.: Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy 66, 714–728 (2014)
Roth, I.F., Ambs, L.L.: Incorporating externalities into a full cost approach to electric power generation life-cycle costing. Energy 29(12–15), 2125–2144 (2004)
Succar, S., Denkenberger, D.C., Williams, R.H.: Optimization of specific rating for wind turbine arrays coupled to compressed air energy storage. Appl. Energy 96, 222–234 (2012)
Hdidouan, D., Staffell, I.: The impact of climate change on the levelised cost of wind energy. Renew. Energy 101, 575–592 (2017)
Rubert, T., Mcmillan D., Niewczas P. (2017) A decision support tool to assist with lifetime extension of wind turbines, Renew. Energy
Moomaw, W., Burgherr, P., Heath, G., Lenzen, M., Nyboer, J., Verbruggen, A.: IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge (2011)
Garrett, P., Ronde, K. (2011) Life cycle assessment of electricity production from a v90–2.0 mw gridstreamer wind plant
DES ENERGIES RENOUVELABLES, S. Panorame de l’Electricite Renouvelable en 2016 (Renewable Electricity panorama in 2016), Renewable energy syndicate, Paris (2016)
WINDEUROPE. (2017b) Wind energy’s frequently asked questions, URL http://www.ewea.org/wind-energy-basics/faq.
EDF. 2014 (accessed April 15, 2017), EDF contract in France, (available upon request). URL https://www.edf-oa.fr/sites/default/files/uploads/contributeur/documents/ cp_e14_v0.3_du_06_04_2016.pdf
EUROPA (accessed April 15, 2017), electricity prices by energy source in France. http://ec.europa.eu/eurostat/statistics-explained/images/e/ee/Energy_prices_YB2016-FR.xlsx (2016)
Fee, F. E. E. (accessed April 15, 2017), Costs of onshore wind energy in France, translated from French. http://fee.asso.fr/pub/ observatoire-couts-de-leolien-terrestre-france/ (2016)
Obi, M., Jensen, S., Ferris, J.B., Bass, R.B.: Calculation of levelized costs of electricity for various electrical energy storage systems. Renew. Sustain. Energy Rev. 67, 908–920 (2017)
Tchakoua, P., Wamkeue, R., Ouhrouche, M., Slaoui-Hasnaoui, F., Tameghe, T.A., Ekemb, G.: Wind turbine conditionmonitoring: State-of-the-art review, new trends, and future challenges. Energies 7(4), 2595–2630 (2014)
Wiggelinkhuizen, E., Verbruggen, T., Braam, H., Rademakers, L., Xiang, J., Watson, S.: Assessment of condition monitoring techniques for offshore wind farms. J. Solar Energy Eng. 130(3), 031004 (2008)
Lantz E.: Operations Expenditures : Historical Trends and Continuing Challenges, National Renew. Energy Lab. (2013)
Tegen, S., Hand, M., Maples, B., Lantz, E., Schwabe P., Smith A. (2012) 2010 cost of wind energy review, cahier de recherche, National Renewable Energy Laboratory (NREL), Golden, CO.
FRENCH MINISTER OF ENVIRONMENT, E. et SEA. (accessed April 15, 2017), LOI num.2015- 992 du 17 aout 2015 relative à la transition energetique pour la croissance verte. https: //www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000031044385&categorieLien=id. (2015)
Jafar, A.H., Al-Amin, A.Q., Siwar, C.: Environmental impact of alternative fuel mix in electricity generation in malaysia. Renew. Energy 33(10), 2229–2235 (2008)
Saidur, R., Rahim, N., Islam, M., Solangi, K.: Environmental impact of wind energy. Renew. Sustain. Energy Rev. 15(5), 2423–2430 (2011)
DE Cote D’OR, P Translated fromfrench (enquete publique relative à la demande d’autorisation d’exploiter, au titre des installations classees pour la protection de l’envrionnement, unNparc eolien comprenant 8 aerogenerateurs et trois postes de livraison sur le territoire des communes de beze) - rapport du 20/12/2013», cahier de recherche, Prefecture de Cote-d’Or (2013)
Ardente, F., BeccalI, M., Cellura, M., Brano, V.L.: Energy performances and life cycle assessment of an italian wind farm. Renew. Sustain. Energy Rev. 12(1), 200–217 (2008)
Thomson, R. C., G. P. Harrison (2015) Life cycle costs and carbon emissions of offshore wind power
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zaoui, A., Meziane, R., Chatelet, E. et al. Economic evaluation of the life cycle of a wind farm and improving the levelized cost of energy in region Champagne-Ardenne, France. Int J Energy Environ Eng 13, 255–265 (2022). https://doi.org/10.1007/s40095-021-00425-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40095-021-00425-w