[go: up one dir, main page]

Skip to main content

Advertisement

Log in

NDVI-based vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Mountains form distinct geographical units with complex topographic and climatic features. Mountain ecosystems, especially those in arid and semi-arid regions, are likely to be strongly influenced by climate change. The NDVI-based vegetation response to climate change was analyzed in the Tianshan Mountains in China, one of the largest mountain systems of central Asia. Datasets, including the Normalized Difference Vegetation Index (NDVI), precipitation, soil moisture, and snow cover, were used to analyze spatial patterns of NDVI during 2001–2013. A trend test and correlation analysis were used to verify the results. Results showed that: (1) Spatial patterns of NDVI in the Tianshan Mountains revealed significant differences during 2001–2013. A decreasing trend appeared mainly in the Ili River Valley (<−0.005 NDVI/year), the Kaidu River (−0.01 to −0.005 NDVI/year), and Bogda Shan (−0.005 to 0 NDVI/year). NDVI in the western Tianshan Mountains, eastern and western Bogda Shan showed an increasing trend. (2) Spring NDVI in the Tianshan Mountains decreased, while summer NDVI increased during 2001–2013. (3) Spatial variations in vegetation dynamics were attributed to the interaction of the four spheres of the earth’s system, hydrosphere–pedosphere–atmosphere–biosphere. The main contributors including temperature, precipitation, and soil moisture had a notable effect on variations in vegetation. (4) The snow cover in the mountains was crucial for vegetation growth, especially in the winter half of the year. Understanding the spatial characteristics of NDVI in mountains under the effects of climate change will underpin further study in this ecological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aizen VB, Aizen EM, Melack JM, Dozier J (1997) Climatic and hydrologic changes in the Tien Shan, Central Asia. J Clim 10:1393–1404. doi:10.1175/1520-0442(1997)010<1393:CAHCIT>2.0.CO;2

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309. doi:10.1038/nature04141

    Article  Google Scholar 

  • Berghuijs WR, Woods RA, Hrachowitz M (2014) A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat Clim Change 4:583–586. doi:10.1038/nclimate2246

    Article  Google Scholar 

  • Chen T, de Jeu RAM, Liu YY, van der Werf GR, Dolman AJ (2014) Using satellite based soil moisture to quantify the water driven variability in NDVI: a case study over mainland Australia. Remote Sens Environ 140:330–338. doi:10.1016/j.rse.2013.08.022

    Article  Google Scholar 

  • Dai A, Fung IY, Del Genio AD (1997) Surface observed global land precipitation variations during 1900–88. J Clim 10:2943–2962. doi:10.1175/1520-0442(1997)010<2943:SOGLPV>2.0.CO;2

    Article  Google Scholar 

  • Deng H, Chen Y, Wang H, Zhang S (2015) Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia. J Glob Planet Change. doi:10.1016/j.gloplacha.2015.09.015

    Google Scholar 

  • Dye DG, Tucker CJ (2003) Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophys Res Lett. doi:10.1029/2002GL016384

    Google Scholar 

  • Fu B, Burgher I (2015) Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J Arid Environ 113:59–68. doi:10.1016/j.jaridenv.2014.09.010

    Article  Google Scholar 

  • Guo L, Li L (2015) Variation of the proportion of precipitation occurring as snow in the Tian Shan Mountains, China. Int J Climatol 35:1379–1393. doi:10.1002/joc.4063

    Article  Google Scholar 

  • Hamed KH, Ramachandra Rao A (1998) A modified Mann–Kendall trend test for autocorrelated data. J Hydrol 204:182–196. doi:10.1016/S0022-1694(97)00125-X

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711

    Article  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K.Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Hirsch RM, Slack JR (1984) A nonparametric trend test for seasonal data with serial dependence. Water Resour Res 20:727–732. doi:10.1029/WR020i006p00727

    Article  Google Scholar 

  • Holben BN (1986) Characteristics of maximum-value composite images from temporal AVHRR data. Int J Remote Sens 7:1417–1434. doi:10.1080/01431168608948945

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the asian water towers. Science 328:1382–1385. doi:10.1126/science.1183188

    Article  Google Scholar 

  • Insaf TZ, Lin S, Sheridan SC (2013) Climate trends in indices for temperature and precipitation across New York State, 1948–2008. Air Qual Atmos Health 6:247–257. doi:10.1007/s11869-011-0168-x

    Article  Google Scholar 

  • Jeong SJ, Ho CH, Brown ME, Kug JS, Piao S (2011) Browning in desert boundaries in Asia in recent decades. J Geophys Res 116:(D2). doi:10.1029/2010JD014633

  • Jia S, Zhu W, Lű A, Yan T (2011) A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens Environ 115:3069–3079. doi:10.1016/j.rse.2011.06.009

    Article  Google Scholar 

  • Kahya E, Kalaycı S (2004) Trend analysis of streamflow in Turkey. J Hydrol 289:128–144. doi:10.1016/j.jhydrol.2003.11.006

    Article  Google Scholar 

  • Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci 107:20223–20227. doi:10.1073/pnas.1008162107

    Article  Google Scholar 

  • Khadka D, Babel MS, Shrestha S, Tripathi NK (2014) Climate change impact on glacier and snow melt and runoff in Tamakoshi basin in the Hindu Kush Himalayan (HKH) region. J Hydrol 511:49–60. doi:10.1016/j.jhydrol.2014.01.005

    Article  Google Scholar 

  • Lioubimtseva E, Henebry GM (2009) Climate and environmental change in arid Central Asia: impacts, vulnerability, and adaptations. J Arid Environ 73(11):963–977. doi:10.1016/j.jaridenv.2009.04.022

    Article  Google Scholar 

  • Liu Y, Stanturf J, Goodrick S (2010) Wildfire potential evaluation during a drought event with a regional climate model and NDVI. Ecol Inf 5:418–428. doi:10.1016/j.ecoinf.2010.04.001

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531

    Article  Google Scholar 

  • Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Sci. Rep. No. 1, Statistical Forecasting Project, MIT, Cambridge, MA

  • Meehl GA, Curt Covey, Taylor Karl E, Thomas Delworth, Stouffer Ronald J, Mojib Latif, Bryant McAvaney, Mitchell John FB (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Miao L, Jiang C, Xue B, Liu Q, He B, Nath R, Cui X (2015) Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia. Environ Earth Sci 73:2343–2352. doi:10.1007/s12665-014-3582-1

    Article  Google Scholar 

  • Milly PCD, Dunne KA, Vecchia AV (2005) Global pattern of trends in streamflow and water availability in a changing climate. Nature 438(7066):347–350. doi:10.1038/nature04312

    Article  Google Scholar 

  • Nijssen B, O’Donnell G, Hamlet A, Lettenmaier D (2001) Hydrologic sensitivity of global rivers to climate change. Clim Change 50:143–175. doi:10.1023/A:1010616428763

    Article  Google Scholar 

  • Park HS, Sohn BJ (2010) Recent trends in changes of vegetation over East Asia copled with temperature and rainfall variations. J Geophys Res 115(D14). doi:10.1029/2009JD012752

  • Rodriguez-Iturbe I, D’odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722. doi:10.1029/1999WR900255

    Article  Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbagy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philos Trans R Soc Lond B Biol Sci 367(1606):3135–3144. doi:10.1098/rstb.2011.0347

    Article  Google Scholar 

  • Schnur MT, Xie H, Wang X (2010) Estimating root zone soil moisture at distant sites using MODIS NDVI and EVI in a semi-arid region of southwestern. USA Ecol Inf 5:400–409. doi:10.1016/j.ecoinf.2010.05.001

    Article  Google Scholar 

  • Seddon AW, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531(7593):229–232. doi:10.1038/nature16986

    Article  Google Scholar 

  • Serpa D, Nunes JP, Santos J, Sampaio E, Jacinto R, Veiga S, Lima JC, Mpreira M, Corte-Real J, Keizer JJ, Abrantes N (2015) Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Sci Total Environ 538:64–77. doi:10.1016/j.scitotenv.2015.08.033

  • Sherry RA, Weng E, Arnone JA III, Johnson DW, Schimel DS, Verburg PS, Luo Y (2008) Lagged effects of experimental warming and doubled precipitation on annual and seasonal aboveground biomass production in a tallgrass prairie. Glob Change Biol 14(12):2923–2936. doi:10.1111/j.1365-2486.2008.01703.x

    Article  Google Scholar 

  • Shiyin L, Wenxin S, Yongping S, Gang L (2003) Glacier changes since the Little Ice Age maximum in the western Qilian Shan, northwest China, and consequences of glacier runoff for water supply. J Glaciol 49:117–124. doi:10.3189/172756503781830926

    Article  Google Scholar 

  • Siegfried T, Bernauer T, Guiennet R, Sellars S, Robertson AW, Mankin J, Bauer-Gottwein P, Yakovlev A (2012) Will climate change exacerbate water stress in Central Asia? Clim Change 112(3–4):881–899. doi:10.1007/s10584-011-0253-z

    Article  Google Scholar 

  • Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Clim Change 2:725–731. doi:http://www.nature.com/nclimate/journal/v2/n10/abs/nclimate1592.html#supplementary-information

  • Spinoni J, Vogt J, Naumann G, Carrao H, Barbosa P (2015) Towards identifying areas at climatological risk of desertification using the Köppen-Geiger classification and FAO aridity index. Int J Climatol 35:2210–2222. doi:10.1002/joc.4124

    Article  Google Scholar 

  • Wen L, Yang X, Saintilan N (2012) Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem. Ecol Model 242:116–126. doi:10.1016/j.ecolmodel.2012.05.018

    Article  Google Scholar 

  • Wigley TML (2009) The effect of changing climate on the frequency of absolute extreme events. Clim Change 97:67–76. doi:10.1007/s10584-009-9654-7

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23:132–154. doi:10.1080/10889379909377670

    Article  Google Scholar 

  • Zhang Y, Gao J, Liu L, Wang Z, Ding M, Yang X (2013) NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: a case study in the Koshi River Basin in the middle Himalayas. Glob Planet Change 108:139–148. doi:10.1016/j.gloplacha.2013.06.012

    Article  Google Scholar 

  • Zhao X, Hu H, Shen H, Zhou D, Zhou L, Myneni R, Fang J (2015) Satellite-indicated long-term vegetation changes and their drivers on the Mongolian Plateau. Landsc Ecol 30:1599–1611. doi:10.1007/s10980-014-0095-y

    Article  Google Scholar 

  • Zhou D, Zhao X, Hu H, Shen H, Fang J (2015) Long-term vegetation changes in the four mega-sandy lands in Inner Mongolia, China. Landsc Ecol 30:1613–1626. doi:10.1007/s10980-015-0151-2

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-SW-STS-181), the National Natural Science Foundation (No. 41301163), and the Western PhD project of Chinese Academy of Sciences (XBBS201210). Special thanks are owed to editors and anonymous reviewers who had given constructive suggestions and comments for improving the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoping Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, Z., Han, F. et al. NDVI-based vegetation dynamics and their response to recent climate change: a case study in the Tianshan Mountains, China. Environ Earth Sci 75, 1189 (2016). https://doi.org/10.1007/s12665-016-5987-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5987-5

Keywords

Navigation