[go: up one dir, main page]

Skip to main content
Log in

Gut bacteriome in inflammatory bowel disease: An update on recent advances

  • Narrative review
  • Published:
Indian Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Inflammatory bowel diseases (IBD) are chronic inflammatory gut disorders, majorly classified as ulcerative colitis and Crohn’s disease. The complex, multifactorial etiopathogenesis of IBD involves genetic predisposition, environmental cues, aberrant mucosal immune response and a disturbed gut microbiota. Epidemiological trends, studies in gnotobiotic mice models and genome-wide association studies, identifying genes involved in microbial handling, together mount evidence in support of the gut microbiota playing a pivotal role in IBD pathogenesis. Both Crohn’s disease and ulcerative colitis are characterized by severe dysbiosis of the gut microbiome, marked by an expansion of detrimental taxa and concomitant depletion of beneficial members. IBD is characterized by reduction in abundances of bacterial genera involved in production of short-chain fatty acids, bio-transformations of bile acids and synthesis of indole-based tryptophan compounds such as Faecalibacterium, Ruminococcus, Coprococcus, Dorea, Parabacteroides, Eubacterium, Oscillibacter and Prevotella and elevation in members of phyla Proteobacteria and Actinobacteria. This imbalance not only results in exaggerated immune signaling towards the microbial antigens, but also results in an altered metabolomic milieu that triggers additional inflammatory cascades. The present review provides insights into the bacterial dysbiosis observed across different intestinal sites and their metabolomic imprints participating in IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ananthakrishnan AN, Xavier RJ, Podolsky DK. Inflammatory bowel diseases: pathogenesis. Yamada’s Textbook of Gastroenterology [Internet]. 2022 [cited 2023 October 31]. p. 1232–47. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/9781119600206.ch62.

  2. Kedia S, Ahuja V. Is the emergence of inflammatory bowel disease a prime example of “the third epidemiological transition”? Indian J Gastroenterol. 2018;37:183–5.

  3. Furey TS, Sethupathy P, Sheikh SZ. Redefining the IBDs using genome-scale molecular phenotyping. Nat Rev Gastroenterol Hepatol. 2019;16:296–311. https://www.nature.com/articles/s41575-019-0118-x.

  4. Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020;578:527–39. https://www.nature.com/articles/s41586-020-2025-2.

  5. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24. https://pubmed.ncbi.nlm.nih.gov/23128233/.

  6. Halfvarson J, Bodin L, Tysk C, Lindberg E, Järnerot G. Inflammatory bowel disease in a Swedish twin cohort: a long- term follow-up of concordance and clinical characteristics. Gastroenterology. 2003;124:1767–73. https://pubmed.ncbi.nlm.nih.gov/12806610/.

  7. Franzosa EA, Sirota-Madi A, Avila-Pacheco J, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4:293–305. https://pubmed.ncbi.nlm.nih.gov/30531976/.

  8. Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–62. https://www.nature.com/articles/s41586-019-1237-9.

  9. Simon JC, Marchesi JR, Mougel C, Selosse MA. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 2019;7:5. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0619-4.

  10. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. https://www.nature.com/articles/nature08821.

  11. Sellon RK, Tonkonogy S, Schultz M, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31. https://pubmed.ncbi.nlm.nih.gov/9784526/.

  12. Brand EC, Klaassen MAY, Gacesa R, et al. Healthy cotwins share gut microbiome signatures with their inflammatory bowel disease twins and unrelated patients. Gastroenterology. 2021;160:1970–85. http://www.gastrojournal.org/article/S0016508521000974/fulltext.

  13. Laubitz D, Harrison CA, Midura-Kiela MT, et al. Reduced epithelial Na+/H+ exchange drives gut microbial dysbiosis and promotes inflammatory response in T cell-mediated murine colitis. PLoS One. 2016;11:e0152044. https://pubmed.ncbi.nlm.nih.gov/27050757/.

  14. Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe. 2015;18:489–500. https://doi.org/10.1016/j.chom.2015.09.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santoru ML, Piras C, Murgia A, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017;7:9523. https://www.nature.com/articles/s41598-017-10034-5.

  16. Imhann F, Vich Vila A, Bonder MJ, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2018;67:108–19. https://gut.bmj.com/content/67/1/108.

  17. Zhang YL, Cai LT, Qi JY, et al. Gut microbiota contributes to the distinction between two traditional Chinese medicine syndromes of ulcerative colitis. World J Gastroenterol. 2019;25:3242–55. https://doi.org/10.3748/wjg.v25.i25.3242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clooney AG, Eckenberger J, Laserna-Mendieta E, et al. Ranking microbiome variance in inflammatory bowel disease: a large longitudinal intercontinental study. Gut. 2021;70:499–510. https://gut.bmj.com/content/70/3/499.

  19. Kedia S, Ghosh TS, Jain S, et al. Gut microbiome diversity in acute severe colitis is distinct from mild to moderate ulcerative colitis. J Gastroenterol Hepatol. 2021;36:731–9. https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.15232.

  20. Lavelle A, Lennon G, O’Sullivan O, et al. Spatial variation of the colonic microbiota in patients with ulcerative colitis and control volunteers. Gut. 2015;64:1553–61. https://pubmed.ncbi.nlm.nih.gov/25596182/.

  21. Jalanka J, Cheng J, Hiippala K, et al. Colonic mucosal microbiota and association of bacterial taxa with the expression of host antimicrobial peptides in pediatric ulcerative colitis. Int J Mol Sci. 2020;21:6044. https://pubmed.ncbi.nlm.nih.gov/32842596/.

  22. Moen AEF, Lindstrøm JC, Tannæs TM, et al. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Sci Rep. 2018;8:17278. https://www.nature.com/articles/s41598-018-35243-4.

  23. Butera A, Di Paola M, Vitali F, et al. IL-13 mRNA tissue content identifies two subsets of adult ulcerative colitis patients with different clinical and mucosa-associated microbiota profiles. J Crohns Colitis. 2020;14:369–80. https://pubmed.ncbi.nlm.nih.gov/31501882/.

  24. Hirano A, Umeno J, Okamoto Y, et al. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol. 2018;33:1590–7. https://onlinelibrary.wiley.com/doi/full/10.1111/jgh.14129.

  25. Hoarau G, Mukherjee PK, Gower-Rousseau C, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. mBio. 2016;7:e01250–16. https://journals.asm.org/doi/10.1128/mbio.01250-16.

  26. Metwaly A, Dunkel A, Waldschmitt N, et al. Integrated microbiota and metabolite profiles link Crohn’s disease to sulfur metabolism. Nat Commun. 2020;11:4322. https://pubmed.ncbi.nlm.nih.gov/32859898/.

  27. Pascal V, Pozuelo M, Borruel N, et al. A microbial signature for Crohn’s disease. Gut. 2017;66:813–22. https://pubmed.ncbi.nlm.nih.gov/28179361/.

  28. Andoh A, Kuzuoka H, Tsujikawa T, et al. Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn’s disease. J Gastroenterol. 2012;47:1298–307. https://pubmed.ncbi.nlm.nih.gov/22576027/.

  29. Gevers D, Kugathasan S, Denson LA, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15:382–92.

  30. Shin SY, Kim Y, Kim WS, et al. Compositional changes in fecal microbiota associated with clinical phenotypes and prognosis in Korean patients with inflammatory bowel disease. Intest Res. 2023;21:148–60. https://pubmed.ncbi.nlm.nih.gov/35692191/.

  31. Wu P, Wu B, Zhuang Z, et al. Intestinal mucosal and fecal microbiota profiles in Crohn’s disease in Chinese children. Med Microecol. 2023;15:100071.

  32. Olaisen M, Flatberg A, Granlund AVB, et al. Bacterial mucosa-associated microbiome in inflamed and proximal noninflamed ileum of patients with Crohn’s disease. Inflamm Bowel Dis. 2021;27:12–24. https://doi.org/10.1093/ibd/izaa107.

  33. Libertucci J, Dutta U, Kaur S, et al. Inflammation-related differences in mucosa-associated microbiota and intestinal barrier function in colonic Crohn’s disease. Am J Physiol Gastrointest Liver Physiol. 2018;315:G420–31. https://pubmed.ncbi.nlm.nih.gov/29848021/.

  34. Chiodini RJ, Dowd SE, Chamberlin WM, Galandiuk S, Davis B, Glassing A. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced Crohn’s disease of the ileum. PLoS One. 2015;10:e0134382. https://pubmed.ncbi.nlm.nih.gov/26222621/.

  35. Jacobs JP, Goudarzi M, Lagishetty V, et al. Crohn’s disease in endoscopic remission, obesity, and cases of high genetic risk demonstrate overlapping shifts in the colonic mucosal-luminal interface microbiome. Genome Med. 2022;14:91.https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-022-01099-7.

  36. Chassaing B, Rolhion N, De Vallée A, et al. Crohn disease–associated adherent-invasive E. coli bacteria target mouse and human Peyer’s patches via long polar fimbriae. J Clin Invest. 2011;121:966–75. https://doi.org/10.1172/JCI44632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Viladomiu M, Metz ML, Lima SF, et al. Adherent-invasive E. coli metabolism of propanediol in Crohn’s disease regulates phagocytes to drive intestinal inflammation. Cell Host Microbe. 2021;29:607–19.e8. https://pubmed.ncbi.nlm.nih.gov/33539767/.

  38. Chung L, Thiele Orberg E, Geis AL, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23:203–14.e5. https://pubmed.ncbi.nlm.nih.gov/29398651/.

  39. Nielsen HL, Dalager-Pedersen M, Nielsen H. High risk of microscopic colitis after Campylobacter concisus infection: population-based cohort study. Gut. 2020;69:1952–8. https://pubmed.ncbi.nlm.nih.gov/32111632/.

  40. Liu F, Lee H, Lan R, Zhang L. Zonula occludens toxins and their prophages in Campylobacter species. Gut Pathog. 2016;8:43. https://pubmed.ncbi.nlm.nih.gov/27651834/.

  41. Mahendran V, Riordan SM, Grimm MC, et al. Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS One. 2011;6:e25417. https://doi.org/10.1371/journal.pone.0025417.

  42. Su W, Chen Y, Cao P, et al. Fusobacterium nucleatum promotes the development of ulcerative colitis by inducing the autophagic cell death of intestinal epithelial. Front Cell Infect Microbiol. 2020;10:594806. https://pubmed.ncbi.nlm.nih.gov/33330137/.

  43. Liu H, Hong XL, Sun TT, Huang XW, Wang JL, Xiong H. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis. 2020;21:385–98. https://onlinelibrary.wiley.com/doi/full/10.1111/1751-2980.12909.

  44. Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology. 2017;152:851–66.e24. https://pubmed.ncbi.nlm.nih.gov/27876571/.

  45. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14:195–206. https://doi.org/10.1016/j.chom.2013.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alexander M, Ang QY, Nayak RR, et al. Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe. 2022;30:17–30.e9. https://pubmed.ncbi.nlm.nih.gov/34822777/.

  47. Khan IA, Pilli S, Surendranath S, et al. Prevalence and association of Mycobacterium avium subspecies paratuberculosis with disease course in patients with ulcero-constrictive ileocolonic disease. PLoS One. 2016;11:e0152063. https://pubmed.ncbi.nlm.nih.gov/27019109/.

  48. Agrawal G, Borody T, Clancy A, Sharma R, Huynh R, Ramrakha S. Targeted combination antibiotic therapy induces remission in treatment-naïve Crohn’s disease: a case series. Microorganisms. 2020;8:371. https://doi.org/10.3390/microorganisms8030371.

  49. Kushkevych I, Sangrador JC, Dordević D, et al. Evaluation of physiological parameters of intestinal sulfate-reducing bacteria isolated from patients suffering from IBD and healthy people. J Clin Med. 2020;9:1920. https://doi.org/10.3390/jcm9061920.

  50. Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J Adv Res. 2021;27:55–69.

    Article  PubMed  Google Scholar 

  51. Devkota S, Wang Y, Musch MW, et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature. 2012;487:104–8. https://www.nature.com/articles/nature11225.

  52. Xie R, Gu Y, Li M, et al. Desulfovibrio vulgaris interacts with novel gut epithelial immune receptor LRRC19 and exacerbates colitis. Microbiome. 2024;12:4. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-023-01722-8.

  53. Petersen AM, Mirsepasi-Lauridsen HC, Vester-Andersen MK, Sørensen N, Krogfelt KA, Bendtsen F. High abundance of proteobacteria in ileo-anal pouch anastomosis and increased abundance of fusobacteria associated with increased pouch inflammation. Antibiotics (Basel). 2020;9:237. https://www.mdpi.com/2079-6382/9/5/237/htm.

  54. Reshef L, Kovacs A, Ofer A, et al. Pouch inflammation is associated with a decrease in specific bacterial taxa. Gastroenterology. 2015;149:718–27. https://pubmed.ncbi.nlm.nih.gov/26026389/.

  55. Komanduri S, Gillevet PM, Sikaroodi M, Mutlu E, Keshavarzian A. Dysbiosis in pouchitis: evidence of unique microfloral patterns in pouch inflammation. Clin Gastroenterol Hepatol. 2007;5:352–60. https://pubmed.ncbi.nlm.nih.gov/17368235/.

  56. Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science. 2013;341:569–73. https://www.science.org/doi/10.1126/science.1241165.

  57. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Larraufie P, Martin-Gallausiaux C, Lapaque N, et al. SCFAs strongly stimulate PYY production in human enteroendocrine cells. Sci Rep. 2018;8:74. https://pubmed.ncbi.nlm.nih.gov/29311617/.

  59. Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61:364–71. https://pubmed.ncbi.nlm.nih.gov/22190648/.

  60. Davie JR. Inhibition of histone deacetylase activity by butyrate. J Nutr. 2003;133 7 Suppl:2485S–93S. https://pubmed.ncbi.nlm.nih.gov/12840228/.

  61. Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2014;63:1275–83. https://pubmed.ncbi.nlm.nih.gov/24021287/.

  62. Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734. https://www.nature.com/articles/ncomms7734.

  63. Tye H, Yu CH, Simms LA, et al. NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease. Nat Commun. 2018;9:3728. https://pubmed.ncbi.nlm.nih.gov/30214011/.

  64. Sayin SI, Wahlström A, Felin J, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17:225–35.

    Article  CAS  PubMed  Google Scholar 

  65. De Preter V, Bulteel V, Suenaert P, et al. Pouchitis, similar to active ulcerative colitis, is associated with impaired butyrate oxidation by intestinal mucosa. Inflamm Bowel Dis. 2009;15:335–40. https://pubmed.ncbi.nlm.nih.gov/18942762/.

  66. Schieffer KM, Williams ED, Yochum GS, Koltun WA. Review article: the pathogenesis of pouchitis. Aliment Pharmacol Ther. 2016;44:817–35. https://pubmed.ncbi.nlm.nih.gov/27554912/.

  67. Di Ciaula A, Bonfrate L, Khalil M, Portincasa P. The interaction of bile acids and gut inflammation influences the pathogenesis of inflammatory bowel disease. Intern Emerg Med. 2023;18:2181–97. https://link.springer.com/article/10.1007/s11739-023-03343-3.

  68. Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357:eaaf9794. https://pubmed.ncbi.nlm.nih.gov/28751584/.

  69. Banskota S, Ghia JE, Khan WI. Serotonin in the gut: blessing or a curse. Biochimie. 2019;161:56–64.

    Article  CAS  PubMed  Google Scholar 

  70. Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011;141:237–48, 248.e1. https://pubmed.ncbi.nlm.nih.gov/21600206/.

  71. Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Gastroenterology. 2011;141:237–48, 248.e1. https://pubmed.ncbi.nlm.nih.gov/32076145/.

  72. Paramsothy S, Paramsothy R, Rubin DT, et al. Faecal microbiota transplantation for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2017;11:1180–99. https://doi.org/10.1093/ecco-jcc/jjx063.

  73. Kedia S, Virmani S, Vuyyuru SK, et al. Faecal microbiota transplantation with anti-inflammatory diet (FMT-AID) followed by anti-inflammatory diet alone is effective in inducing and maintaining remission over 1 year in mild to moderate ulcerative colitis: a randomised controlled trial. Gut. 2022;71:2401–13. https://doi.org/10.1136/gutjnl-2022-327811.

  74. Henn MR, O’Brien EJ, Diao L, et al. A phase 1b safety study of SER-287, a spore-based microbiome therapeutic, for active mild to moderate ulcerative colitis. Gastroenterology. 2021;160:115–27.e30. https://pubmed.ncbi.nlm.nih.gov/32763240/.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea for the article: Vineet Ahuja; literature search and analysis: Aditya Bajaj, Manasvini Markandey; writing—original draft preparation: Aditya Bajaj, Manasvini Markandey; writing—review and editing: Saurabh Kedia, Vineet Ahuja.

Corresponding author

Correspondence to Vineet Ahuja.

Ethics declarations

Competing interests

AB, MM, SK and VA declare no competing interests.

Ethical approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Human ethics

Not applicable.

Disclaimer

The authors are solely responsible for the data and the contents of the paper. In no way is the Honorary Editor-in-Chief, Editorial Board Members, the Indian Society of Gastroenterology or the printer/publishers responsible for the results/findings and content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, A., Markandey, M., Kedia, S. et al. Gut bacteriome in inflammatory bowel disease: An update on recent advances. Indian J Gastroenterol 43, 103–111 (2024). https://doi.org/10.1007/s12664-024-01541-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12664-024-01541-1

Keywords

Navigation