[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Cardiac excitation involves the generation of action potential by individual cells and the subsequent conduction of the action potential from cell to cell through intercellular gap junctions. Excitation of the cellular membrane results in opening of the voltage-gated L-type calcium ion (Ca2+) channels, thereby allowing a small amount of Ca2+ to enter the cell, which in turn triggers the release of a much greater amount of Ca2+ from the sarcoplasmic reticulum, the intracellular Ca2+ store, and gives rise to the systolic Ca2+ transient and contraction. These processes are highly regulated by the autonomic nervous system, which ensures the acute and reliable contractile function of the heart and the short-term modulation of this function upon changes in heart rate or workload. It has recently become evident that discrete clusters of different ion channels and regulatory receptors are present in the sarcolemma, where they form an interacting network and work together as a part of a macro-molecular signalling complex which in turn allows the specificity, reliability and accuracy of the autonomic modulation of the excitation–contraction processes by a variety of neurohormonal pathways. Disruption in subcellular targeting of ion channels and associated signalling proteins may contribute to the pathophysiology of a variety of cardiac diseases, including heart failure and certain arrhythmias. Recent methodological advances have made it possible to routinely image the topography of live cardiomyocytes, allowing the study of clustering functional ion channels and receptors as well as their coupling within a specific microdomain. In this review we highlight the emerging understanding of the functionality of distinct subcellular microdomains in cardiac myocytes (e.g. T-tubules, lipid rafts/caveolae, costameres and intercalated discs) and their functional role in the accumulation and regulation of different subcellular populations of sodium, Ca2+ and potassium ion channels and their contributions to cellular signalling and cardiac pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai X, Pogwizd SM (2005) Connexin 43 downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A. Circ Res 96(1):54–63

    CAS  PubMed  Google Scholar 

  • Aimond F, Alvarez JL, Rauzier JM, Lorente P, Vassort G (1999) Ionic basis of ventricular arrhythmias in remodeled rat heart during long-term myocardial infarction. Cardiovasc Res 42(2):402–415

    CAS  PubMed  Google Scholar 

  • Akar FG, Spragg DD, Tunin RS, Kass DA, Tomaselli GF (2004) Mechanisms underlying conduction slowing and arrhythmogenesis in nonischemic dilated cardiomyopathy. Circ Res 95(7):717–725

    CAS  PubMed  Google Scholar 

  • Asimaki A, Kapoor S, Plovie E et al (2014) Identification of a new modulator of the intercalated disc in a zebrafish model of arrhythmogenic cardiomyopathy. Sci Transl Med 6(240):240ra274

    Google Scholar 

  • Ayettey AS, Navaratnam V (1978) The T-tubule system in the specialized and general myocardium of the rat. J Anat 127(Pt 1):125–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balijepalli RC, Kamp TJ (2008) Caveolae, ion channels and cardiac arrhythmias. Prog Biophys Mol Biol 98(2–3):149–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balijepalli RC, Foell JD, Hall DD, Hell JW, Kamp TJ (2006) Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for beta(2)-adrenergic regulation. Proc Natl Acad Sci USA 103(19):7500–7505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balijepalli RC, Delisle BP, Balijepalli SY et al (2007) Kv11.1 (ERG1) K+ channels localize in cholesterol and sphingolipid enriched membranes and are modulated by membrane cholesterol. Channels (Austin) 1(4):263–272

  • Barouch LA, Harrison RW, Skaf MW et al (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416(6878):337–339

    CAS  PubMed  Google Scholar 

  • Barry DM, Trimmer JS, Merlie JP, Nerbonne JM (1995) Differential expression of voltage-gated K+ channel subunits in adult rat heart. Relation to functional K+ channels? Circ Res 77(2):361–369

    CAS  PubMed  Google Scholar 

  • Baruscotti M, Westenbroek R, Catterall WA, DiFrancesco D, Robinson RB (1997) The newborn rabbit sino-atrial node expresses a neuronal type I-like Na+ channel. J Physiol 498(Pt 3):641–648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bassani JW, Bassani RA, Bers DM (1994) Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms. J Physiol 476(2):279–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Benitah JP, Kerfant BG, Vassort G, Richard S, Gomez AM (2002) Altered communication between L-type calcium channels and ryanodine receptors in heart failure. Front Biosci 7:e263–e275

    CAS  PubMed  Google Scholar 

  • Benitah JP, Alvarez JL, Gomez AM (2010) L-type Ca2+ current in ventricular cardiomyocytes. J Mol Cell Cardiol 48(1):26–36

    CAS  PubMed  Google Scholar 

  • Best JM, Kamp TJ (2012) Different subcellular populations of L-type Ca2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol 52(2):376–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhargava A, O’Hara T, Sikkel MB, Lyon AR, Trayanova NA, Gorelik J (2012) Nanoscale movement of L-type calcium channels in the cardiomyocyte membrane can contribute to arrhythmia during heart failure. Circulation 126, A11953

    Google Scholar 

  • Bhargava A, Lin X, Novak P et al  (2013) Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte. Circ Res 112(8):1112–1120

  • Bichet D, Cornet V, Geib S et al  (2000) The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 25(1):177–190

  • Birnbaumer L, Qin N, Olcese R et al  (1998) Structures and functions of calcium channel beta subunits. J Bioenerg Biomembr 30(4):357–375

  • Bito V, Heinzel FR, Biesmans L, Antoons G, Sipido KR (2008) Crosstalk between L-type Ca2+ channels and the sarcoplasmic reticulum: alterations during cardiac remodelling. Cardiovasc Res 77(2):315–324

    CAS  PubMed  Google Scholar 

  • Bosch RF, Zeng X, Grammer JB, Popovic K, Mewis C, Kuhlkamp V (1999) Ionic mechanisms of electrical remodeling in human atrial fibrillation. Cardiovasc Res 44(1):121–131

    CAS  PubMed  Google Scholar 

  • Boulware MI, Kordasiewicz H, Mermelstein PG (2007) Caveolin proteins are essential for distinct effects of membrane estrogen receptors in neurons. J Neurosci 27(37):9941–9950

    CAS  PubMed  Google Scholar 

  • Bovo E, de Tombe PP, Zima AV (2014) The role of dyadic organization in regulation of sarcoplasmic reticulum Ca2+ handling during rest in rabbit ventricular myocytes. Biophys J 106(9):1902–1909

    CAS  PubMed  Google Scholar 

  • Brette F, Orchard C (2003) T-tubule function in mammalian cardiac myocytes. Circ Res 92(11):1182–1192

    CAS  PubMed  Google Scholar 

  • Brette F, Salle L, Orchard CH (2004) Differential modulation of L-type Ca2+ current by SR Ca2+ release at the T-tubules and surface membrane of rat ventricular myocytes. Circ Res 95(1):e1–e7

    CAS  PubMed  Google Scholar 

  • Brette F, Despa S, Bers DM, Orchard CH (2005) Spatiotemporal characteristics of SR Ca2+ uptake and release in detubulated rat ventricular myocytes. J Mol Cell Cardiol 39(5):804–812

    CAS  PubMed  Google Scholar 

  • Brette F, Salle L, Orchard CH (2006) Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J 90(1):381–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce AF, Rothery S, Dupont E, Severs NJ (2008) Gap junction remodelling in human heart failure is associated with increased interaction of connexin43 with ZO-1. Cardiovasc Res 77(4):757–765

    CAS  PubMed  Google Scholar 

  • Bush EW, Hood DB, Papst PJ et al  (2006) Canonical transient receptor potential channels promote cardiomyocyte hypertrophy through activation of calcineurin signaling. J Biol Chem 281(44):33487–33496

  • Butler MH, David C, Ochoa GC et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137(6):1355–1367

  • Cannell MB, Kong CH (2012) Local control in cardiac E-C coupling. J Mol Cell Cardiol 52(2):298–303

    CAS  PubMed  Google Scholar 

  • Casini S, Tan HL, Demirayak I et al (2010) Tubulin polymerization modifies cardiac sodium channel expression and gating. Cardiovasc Res 85(4):691–700

    CAS  PubMed  Google Scholar 

  • Catterall WA (1992) Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 72[4 Suppl]:S15–S48

    CAS  PubMed  Google Scholar 

  • Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    CAS  PubMed  Google Scholar 

  • Cavalli A, Eghbali M, Minosyan TY, Stefani E, Philipson KD (2007) Localization of sarcolemmal proteins to lipid rafts in the myocardium. Cell Calcium 42(3):313–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cerrone M, Delmar M (2014) Desmosomes and the sodium channel complex: implications for arrhythmogenic cardiomyopathy and Brugada syndrome. Trends Cardiovasc Med 24(5):184–190

    CAS  PubMed  Google Scholar 

  • Cerrone M, Lin X, Zhang M et al (2014) Missense mutations in plakophilin-2 cause sodium current deficit and associate with a brugada syndrome phenotype. Circulation 129(10):1092–1103

    CAS  PubMed  Google Scholar 

  • Chan FC, Cheng CP, Wu KH et al (2011) Intercalated disc-associated protein, mXin-alpha, influences surface expression of Ito currents in ventricular myocytes. Front Biosci (Elite Ed) 3:1425–1442

    Google Scholar 

  • Chase A, Orchard CH (2011) Ca efflux via the sarcolemmal Ca ATPase occurs only in the T-tubules of rat ventricular myocytes. J Mol Cell Cardiol 50(1):187–193

    CAS  PubMed  Google Scholar 

  • Chen-Izu Y, Xiao RP, Izu LT et al  (2000) Gi-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca2+ channels. Biophys J 79(5):2547–2556

  • Chiang CS, Huang CH, Chieng H et al (2009) The CaV3.2 T-type Ca2+ channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104(4):522–530

    CAS  PubMed  Google Scholar 

  • Chien AJ, Zhao X, Shirokov RE et al (1995) Roles of a membrane-localized beta subunit in the formation and targeting of functional L-type Ca2+ channels. J Biol Chem 270(50):30036–30044

  • Chu PJ, Larsen JK, Chen CC, Best PM (2004) Distribution and relative expression levels of calcium channel beta subunits within the chambers of the rat heart. J Mol Cell Cardiol 36(3):423–434

    CAS  PubMed  Google Scholar 

  • Clark RB, Tremblay A, Melnyk P, Allen BG, Giles WR, Fiset C (2001) T-tubule localization of the inward-rectifier K(+) channel in mouse ventricular myocytes: a role in K(+) accumulation. J Physiol 537(Pt 3):979–992

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen SA (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks. Circulation 94(12):3083–3086

    CAS  PubMed  Google Scholar 

  • Cohen AW, Hnasko R, Schubert W, Lisanti MP (2004) Role of caveolae and caveolins in health and disease. Physiol Rev 84(4):1341–1379

    CAS  PubMed  Google Scholar 

  • Cohen RM, Foell JD, Balijepalli RC, Shah V, Hell JW, Kamp TJ (2005) Unique modulation of L-type Ca2+ channels by short auxiliary beta1d subunit present in cardiac muscle. Am J Physiol Heart Circ Physiol 288(5):H2363–H2374

    CAS  PubMed  Google Scholar 

  • Collin T, Wang JJ, Nargeot J, Schwartz A (1993) Molecular cloning of three isoforms of the L-type voltage-dependent calcium channel beta subunit from normal human heart. Circ Res 72(6):1337–1344

    CAS  PubMed  Google Scholar 

  • Cordeiro JM, Spitzer KW, Giles WR, Ershler PE, Cannell MB, Bridge JH (2001) Location of the initiation site of calcium transients and sparks in rabbit heart Purkinje cells. J Physiol 531(Pt 2):301–314

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danik SB, Rosner G, Lader J, Gutstein DE, Fishman GI, Morley GE (2008) Electrical remodeling contributes to complex tachyarrhythmias in connexin43-deficient mouse hearts. FASEB J 22(4):1204–1212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Davare MA, Avdonin V, Hall DD et al (2001) A beta2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2. Science 293(5527):98–101

    CAS  PubMed  Google Scholar 

  • Desplantez T, McCain ML, Beauchamp P et al (2012) Connexin43 ablation in foetal atrial myocytes decreases electrical coupling, partner connexins, and sodium current. Cardiovasc Res 94(1):58–65

  • Dhar Malhotra J, Chen C, Rivolta I et al (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103(9):1303–1310

    CAS  PubMed  Google Scholar 

  • Dhein S, Larsen BD, Petersen JS, Mohr FW (2003) Effects of the new antiarrhythmic peptide ZP123 on epicardial activation and repolarization pattern. Cell Commun Adhes 10(4–6):371–378

    CAS  PubMed  Google Scholar 

  • Dibb KM, Clarke JD, Horn MA et al (2009) Characterization of an extensive transverse tubular network in sheep atrial myocytes and its depletion in heart failure. Circ Heart Fail 2(5):482–489

  • Dobrev D, Teos LY, Lederer WJ (2009) Unique atrial myocyte Ca2+ signaling. J Mol Cell Cardiol 46(4):448–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobrzynski H, Boyett MR, Anderson RH (2007) New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115(14):1921–1932

    PubMed  Google Scholar 

  • Duclohier H (2005) Neuronal sodium channels in ventricular heart cells are localized near T-tubules openings. Biochem Biophys Res Commun 334(4):1135–1140

    CAS  PubMed  Google Scholar 

  • Dupont E, Matsushita T, Kaba RA et al (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33(2):359–371

  • Eldstrom J, Van Wagoner DR, Moore ED, Fedida D (2006) Localization of Kv1.5 channels in rat and canine myocyte sarcolemma. FEBS Lett 580(26):6039–6046

    CAS  PubMed  Google Scholar 

  • Fareh S, Benardeau A, Thibault B, Nattel S (1999) The T-type Ca(2+) channel blocker mibefradil prevents the development of a substrate for atrial fibrillation by tachycardia-induced atrial remodeling in dogs. Circulation 100(21):2191–2197

    CAS  PubMed  Google Scholar 

  • Fawcett DW, McNutt NS (1969) The ultrastructure of the cat myocardium. I. Ventricular papillary muscle. J Cell Biol 42(1):1–45

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fedorov VV, Glukhov AV, Chang R (2012) Conduction barriers and pathways of the sino-atrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol Heart Circ Physiol 302(9):H1773–H1783

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69(4):788–797

    CAS  PubMed  Google Scholar 

  • Foell JD, Balijepalli RC, Delisle BP et al (2004) Molecular heterogeneity of calcium channel beta-subunits in canine and human heart: evidence for differential subcellular localization. Physiol Genomics 17(2):183–200

  • Folco EJ, Liu GX, Koren G (2004) Caveolin-3 and SAP97 form a scaffolding protein complex that regulates the voltage-gated potassium channel Kv1.5. Am J Physiol Heart Circ Physiol 287(2):H681–H690

    CAS  PubMed  Google Scholar 

  • Fozzard HA, Hanck DA (1996) Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev 76(3):887–926

    CAS  PubMed  Google Scholar 

  • Galbiati F, Engelman JA, Volonte D et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276(24):21425–21433

    CAS  PubMed  Google Scholar 

  • Gao T, Puri TS, Gerhardstein BL, Chien AJ, Green RD, Hosey MM (1997) Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 272(31):19401–19407

    CAS  PubMed  Google Scholar 

  • Garg V, Jiao J, Hu K (2009) Regulation of ATP-sensitive K+ channels by caveolin-enriched microdomains in cardiac myocytes. Cardiovasc Res 82(1):51–58

    CAS  PubMed  Google Scholar 

  • Gerhardstein BL, Puri TS, Chien AJ, Hosey MM (1999) Identification of the sites phosphorylated by cyclic AMP-dependent protein kinase on the beta 2 subunit of L-type voltage-dependent calcium channels. Biochemistry 38(32):10361–10370

    CAS  PubMed  Google Scholar 

  • Glukhov AV, Flagg TP, Fedorov VV, Efimov IR, Nichols CG (2010) Differential K(ATP) channel pharmacology in intact mouse heart. J Mol Cell Cardiol 48(1):152–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glukhov AV, Fedorov VV, Kalish PW et al (2012) Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy. Circulation 125(15):1835–1847

  • Glukhov AV, Balycheva M, Schobesberger S et al (2013) Distinct distribution of functional calcium channels revealed by super-resolution scanning patch-clamp in adult rat atrial cardiomyocytes. Circulation 128: A10467

  • Glukhov AV, Balycheva M, Bhogal N et al (2014) Caveolae specific location of L-type calcium channels and their role in atrial calcium cycling. Circulation 130, A15399

  • Goebel J, Logan B, Forrest K, Mieczkowski A, Roszman TL, Wills-Karp M (2005) Atorvastatin affects interleukin-2 signaling by altering the lipid raft enrichment of the interleukin-2 receptor beta chain. J Investig Med 53(6):322–328

    CAS  PubMed  Google Scholar 

  • Goel M, Zuo CD, Sinkins WG, Schilling WP (2007) TRPC3 channels colocalize with Na+/Ca2+ exchanger and Na+ pump in axial component of transverse-axial tubular system of rat ventricle. Am J Physiol Heart Circ Physiol 292(2):H874–H883

    CAS  PubMed  Google Scholar 

  • Gomes J, Finlay M, Ahmed AK et al (2012) Electrophysiological abnormalities precede overt structural changes in arrhythmogenic right ventricular cardiomyopathy due to mutations in desmoplakin-A combined murine and human study. Eur Heart J 33(15):1942–1953

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grabner M, Dirksen RT, Beam KG (1998) Tagging with green fluorescent protein reveals a distinct subcellular distribution of L-type and non-L-type Ca2+ channels expressed in dysgenic myotubes. Proc Natl Acad Sci USA 95(4):1903–1908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gratton JP, Bernatchez P, Sessa WC (2004) Caveolae and caveolins in the cardiovascular system. Circ Res 94(11):1408–1417

    CAS  PubMed  Google Scholar 

  • Gu Y, Gorelik J, Spohr HA et al (2002) High-resolution scanning patch-clamp: new insights into cell function. FASEB J 16(7):748–750

  • Guo J, Wang T, Li X et al (2012) Cell surface expression of human ether-a-go-go-related gene (hERG) channels is regulated by caveolin-3 protein via the ubiquitin ligase Nedd4-2. J Biol Chem 287(40):33132–33141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guo A, Zhang X, Iyer VR et al (2014) Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc Natl Acad Sci USA 111(33):12240–12245

  • Haase H, Pfitzmaier B, McEnery MW, Morano I (2000) Expression of Ca(2+) channel subunits during cardiac ontogeny in mice and rats: identification of fetal alpha(1C) and beta subunit isoforms. J Cell Biochem 76(4):695–703

    CAS  PubMed  Google Scholar 

  • Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18(5):331–368

    CAS  PubMed  Google Scholar 

  • Haddock PS, Coetzee WA, Cho E et al (1999) Subcellular [Ca2+]i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes. Circ Res 85(5):415–427

  • Hansma PK, Drake B, Marti O, Gould SA, Prater CB (1989) The scanning ion-conductance microscope. Science 243(4891):641–643

    CAS  PubMed  Google Scholar 

  • Harvey RD, Calaghan SC (2012) Caveolae create local signalling domains through their distinct protein content, lipid profile and morphology. J Mol Cell Cardiol 52(2):366–375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haufe V, Cordeiro JM, Zimmer T et al (2005) Contribution of neuronal sodium channels to the cardiac fast sodium current INa is greater in dog heart Purkinje fibers than in ventricles. Cardiovasc Res 65(1):117–127

  • Hayashi T, Arimura T, Itoh-Satoh M et al (2004) Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 44(11):2192–2201

    CAS  PubMed  Google Scholar 

  • Heinzel FR, Bito V, Biesmans L et al (2008) Remodeling of T-tubules and reduced synchrony of Ca2+ release in myocytes from chronically ischemic myocardium. Circ Res 102(3):338–346

    CAS  PubMed  Google Scholar 

  • Hell JW, Yokoyama CT, Wong ST, Warner C, Snutch TP, Catterall WA (1993) Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel alpha 1 subunit. J Biol Chem 268(26):19451–19457

    CAS  PubMed  Google Scholar 

  • Hell JW, Yokoyama CT, Breeze LJ, Chavkin C, Catterall WA (1995) Phosphorylation of presynaptic and postsynaptic calcium channels by cAMP-dependent protein kinase in hippocampal neurons. EMBO J 14(13):3036–3044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herman DS, Lam L, Taylor MR et al (2012) Truncations of titin causing dilated cardiomyopathy. N Engl J Med 366(7):619–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hermosilla T, Moreno C, Itfinca M et al (2011) L-type calcium channel beta subunit modulates angiotensin II responses in cardiomyocytes. Channels (Austin) 5(3):280–286

  • Hong TT, Smyth JW, Gao D et al (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8(2):e1000312

  • Hong M, Bao L, Kefaloyianni E et al (2012a) Heterogeneity of ATP-sensitive K+ channels in cardiac myocytes: enrichment at the intercalated disk. J Biol Chem 287(49):41258–41267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong TT, Smyth JW, Chu KY et al (2012b) BIN1 is reduced and Cav1.2 trafficking is impaired in human failing cardiomyocytes. Heart Rhythm 9(5):812–820

    PubMed Central  PubMed  Google Scholar 

  • Hong T, Yang H, Zhang SS et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20(6):624–632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Honjo H, Boyett MR, Kodama I, Toyama J (1996) Correlation between electrical activity and the size of rabbit sino-atrial node cells. J Physiol 496(Pt 3):795–808

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang B, Qin D, Deng L, Boutjdir M, El-Sherif N (2000) Reexpression of T-type Ca2+ channel gene and current in post-infarction remodeled rat left ventricle. Cardiovasc Res 46(3):442–449

  • Hullin R, Singer-Lahat D, Freichel M et al (1992) Calcium channel beta subunit heterogeneity: functional expression of cloned cDNA from heart, aorta and brain. EMBO J 11(3):885–890

  • Hullin R, Asmus F, Ludwig A, Hersel J, Boekstegers P (1999) Subunit expression of the cardiac L-type calcium channel is differentially regulated in diastolic heart failure of the cardiac allograft. Circulation 100(2):155–163

    CAS  PubMed  Google Scholar 

  • Hullin R, Khan IF, Wirtz S et al (2003) Cardiac L-type calcium channel beta-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278(24):21623–21630

  • Hullin R, Matthes J, von Vietinghoff S et al (2007) Increased expression of the auxiliary beta(2)-subunit of ventricular L-type Ca(2)+ channels leads to single-channel activity characteristic of heart failure. PLoS One 2(3):e292

    PubMed Central  PubMed  Google Scholar 

  • Huser J, Lipsius SL, Blatter LA (1996) Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol 494(Pt 3):641–651

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM (2011) The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 278(1719):2714–2723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ibrahim M, Siedlecka U, Buyandelger B et al (2013) A critical role for Telethonin in regulating t-tubule structure and function in the mammalian heart. Hum Mol Genet 22(2):372–383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Insel PA, Head BP, Ostrom RS et al (2005) Caveolae and lipid rafts: G protein-coupled receptor signaling microdomains in cardiac myocytes. Ann N Y Acad Sci 1047:166–172

  • Isom LL, De Jongh KS, Catterall WA (1994) Auxiliary subunits of voltage-gated ion channels. Neuron 12(6):1183–1194

    CAS  PubMed  Google Scholar 

  • Jaleel N, Nakayama H, Chen X et al (2008) Ca2+ influx through T- and L-type Ca2+ channels have different effects on myocyte contractility and induce unique cardiac phenotypes. Circ Res 103(10):1109–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jansen JA, Noorman M, Musa H et al (2012) Reduced heterogeneous expression of Cx43 results in decreased Nav1.5 expression and reduced sodium current that accounts for arrhythmia vulnerability in conditional Cx43 knockout mice. Heart Rhythm 9(4):600–607

    PubMed Central  PubMed  Google Scholar 

  • Jiang Y, Huang H, Liu P et al (2014) Expression and localization of TRPC proteins in rat ventricular myocytes at various developmental stages. Cell Tissue Res 355(1):201–212

  • Kaftan E, Marks AR, Ehrlich BE (1996) Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ Res 78(6):990–997

    CAS  PubMed  Google Scholar 

  • Kamada Y, Yamada Y, Yamakage M et al (2004) Single-channel activity of L-type Ca2+ channels reconstituted with the beta2c subunit cloned from the rat heart. Eur J Pharmacol 487(1–3):37–45

  • Kamp TJ, Hell JW (2000) Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ Res 87(12):1095–1102

    CAS  PubMed  Google Scholar 

  • Kamp TJ, Perez-Garcia MT, Marban E (1996) Enhancement of ionic current and charge movement by coexpression of calcium channel beta 1A subunit with alpha 1C subunit in a human embryonic kidney cell line. J Physiol 492(Pt 1):89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinoshita H, Kuwahara K, Takano M et al (2009) T-type Ca2+ channel blockade prevents sudden death in mice with heart failure. Circulation 120(9):743–752

    CAS  PubMed  Google Scholar 

  • Kirk MM, Izu LT, Chen-Izu Y et al (2003) Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J Physiol 547(Pt 2):441–451

  • Kitamura H, Ohnishi Y, Yoshida A et al (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13(9):865–870

    PubMed  Google Scholar 

  • Klein G, Schroder F, Vogler D et al (2003) Increased open probability of single cardiac L-type calcium channels in patients with chronic atrial fibrillation. role of phosphatase 2A. Cardiovasc Res 59(1):37–45

  • Knoll R, Hoshijima M, Hoffman HM et al (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111(7):943–955

    CAS  PubMed  Google Scholar 

  • Kodama I, Nikmaram MR, Boyett MR, Suzuki R, Honjo H, Owen JM (1997) Regional differences in the role of the Ca2+ and Na+ currents in pacemaker activity in the sinoatrial node. Am J Physiol 272(6 Pt 2):H2793–H2806

    CAS  PubMed  Google Scholar 

  • Komukai K, Brette F, Yamanushi TT, Orchard CH (2002) K(+) current distribution in rat sub-epicardial ventricular myocytes. Pflugers Arch 444(4):532–538

    CAS  PubMed  Google Scholar 

  • Korchev YE, Bashford CL, Milovanovic M, Vodyanoy I, Lab MJ (1997) Scanning ion conductance microscopy of living cells. Biophys J 73(2):653–658

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kostin S, Rieger M, Dammer S et al (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242(1–2):135–144

  • Lacerda AE, Kim HS, Ruth P et al (1991) Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel. Nature 352(6335):527–530

  • Lacinova L, Ludwig A, Bosse E, Flockerzi V, Hofmann F (1995) The block of the expressed L-type calcium channel is modulated by the beta 3 subunit. FEBS Lett 373(2):103–107

    CAS  PubMed  Google Scholar 

  • Lampe PD, Lau AF (2004) The effects of connexin phosphorylation on gap junctional communication. Int J Biochem Cell Biol 36(7):1171–1186

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee E, Marcucci M, Daniell L et al (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297(5584):1193–1196

  • Lei M, Jones SA, Liu J et al (2004) Requirement of neuronal- and cardiac-type sodium channels for murine sinoatrial node pacemaking. J Physiol 559(Pt 3):835–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenaerts I, Bito V, Heinzel FR et al (2009) Ultrastructural and functional remodeling of the coupling between Ca2+ influx and sarcoplasmic reticulum Ca2+ release in right atrial myocytes from experimental persistent atrial fibrillation. Circ Res 105(9):876–885

  • Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C (2001) Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci 114(Pt 5):987–998

    CAS  PubMed  Google Scholar 

  • Li J, Patel VV, Kostetskii I et al (2005) Cardiac-specific loss of N-cadherin leads to alteration in connexins with conduction slowing and arrhythmogenesis. Circ Res 97(5):474–481

    CAS  PubMed  Google Scholar 

  • Li J, Kline CF, Hund TJ, Anderson ME, Mohler PJ (2010) Ankyrin-B regulates Kir6.2 membrane expression and function in heart. J Biol Chem 285(37):28723–28730

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin X, Liu N, Lu J et al (2011) Subcellular heterogeneity of sodium current properties in adult cardiac ventricular myocytes. Heart Rhythm 8(12):1923–1930

  • Lipp P, Huser J, Pott L, Niggli E (1996) Spatially non-uniform Ca2+ signals induced by the reduction of transverse tubules in citrate-loaded guinea-pig ventricular myocytes in culture. J Physiol 497(Pt 3):589–597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lisanti MP, Scherer PE, Vidugiriene J et al (1994) Characterization of caveolin-rich membrane domains isolated from an endothelial-rich source: implications for human disease. J Cell Biol 126(1):111–126

  • Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS (2000) Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 275(16):11934–11942

    CAS  PubMed  Google Scholar 

  • Lohn M, Furstenau M, Sagach V et al (2000) Ignition of calcium sparks in arterial and cardiac muscle through caveolae. Circ Res 87(11):1034–1039

  • Louch WE, Bito V, Heinzel FR et al (2004) Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes. Cardiovasc Res 62(1):63–73

  • Louch WE, Mork HK, Sexton J et al (2006) T-tubule disorganization and reduced synchrony of Ca2+ release in murine cardiomyocytes following myocardial infarction. J Physiol 574(Pt 2):519–533

  • Lowe JS, Palygin O, Bhasin N et al (2008) Voltage-gated Nav channel targeting in the heart requires an ankyrin-G dependent cellular pathway. J Cell Biol 180(1):173–186

  • Lyon AR, MacLeod KT, Zhang Y et al (2009) Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci USA 106(16):6854–6859

  • Lyon AR, Bannister ML, Collins T et al (2011) SERCA2a gene transfer decreases sarcoplasmic reticulum calcium leak and reduces ventricular arrhythmias in a model of chronic heart failure. Circ Arrhythm Electrophysiol 4(3):362–372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA 99(6):4073–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maier SK, Westenbroek RE, Yamanushi TT et al (2003) An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node. Proc Natl Acad Sci USA 100(6):3507–3512

  • Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation 109(11):1421–1427

    CAS  PubMed  Google Scholar 

  • Makarewich CA, Correll RN, Gao H et al (2012) A caveolae-targeted L-type Ca(2)+ channel antagonist inhibits hypertrophic signaling without reducing cardiac contractility. Circ Res 110(5):669–674

  • Makarewich CA, Zhang H, Davis J et al (2014) Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction. Circ Res 115(6):567–580

    CAS  PubMed  Google Scholar 

  • Malhotra JD, Thyagarajan V, Chen C, Isom LL (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J Biol Chem 279(39):40748–40754

    CAS  PubMed  Google Scholar 

  • Markandeya YS, Fahey JM, Pluteanu F, Cribbs LL, Balijepalli RC (2011) Caveolin-3 regulates protein kinase A modulation of the Ca(V)3.2 (alpha1H) T-type Ca2+ channels. J Biol Chem 286(4):2433–2444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markandeya YS, Feng L, Vaidyanathan R et al (2013) Caveolin-3 regulates cardiac repolarization by integrated regulation of multiple ionic currents. Circulation 128:A15009

    Google Scholar 

  • Mays DJ, Foose JM, Philipson LH, Tamkun MM (1995) Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J Clin Invest 96(1):282–292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mikami A, Imoto K, Tanabe T et al (1989) Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340(6230):230–233

  • Mitterdorfer J, Froschmayr M, Grabner M, Striessnig J, Glossmann H (1994) Calcium channels: the beta-subunit increases the affinity of dihydropyridine and Ca2+ binding sites of the alpha 1-subunit. FEBS Lett 352(2):141–145

    CAS  PubMed  Google Scholar 

  • Muller A, Schaefer T, Linke W et al (1997) Actions of the antiarrhythmic peptide AAP10 on intercellular coupling. Naunyn Schmiedebergs Arch Pharmacol 356(1):76–82

  • Nakamura H, Kurokawa J, Bai CX et al (2007) Progesterone regulates cardiac repolarization through a nongenomic pathway: an in vitro patch-clamp and computational modeling study. Circulation 116(25):2913–2922

    CAS  PubMed  Google Scholar 

  • Nakayama H, Wilkin BJ, Bodi I, Molkentin JD (2006) Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. FASEB J 20(10):1660–1670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakayama H, Bodi I, Correll RN et al (2009) alpha1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice. J Clin Invest 119(12):3787–3796

  • Nattel S, Maguy A, Le Bouter S, Yeh YH (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87(2):425–456

    CAS  PubMed  Google Scholar 

  • Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253

    CAS  PubMed  Google Scholar 

  • Nikolaev VO, Moshkov A, Lyon AR et al (2010) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science 327(5973):1653–1657

    CAS  PubMed  Google Scholar 

  • Niwa N, Yasui K, Opthof T et al (2004) Cav3.2 subunit underlies the functional T-type Ca2+ channel in murine hearts during the embryonic period. Am J Physiol Heart Circ Physiol 286(6):H2257–H2263

    CAS  PubMed  Google Scholar 

  • Novak P, Li C, Shevchuk AI et al (2009) Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods 6(4):279–281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Novak P, Gorelik J, Vivekananda U et al (2013) Nanoscale-targeted patch-clamp recordings of functional presynaptic ion channels. Neuron 79(6):1067–1077

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Connell KM, Whitesell JD, Tamkun MM (2008) Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 294(1):H229–H237

    PubMed  Google Scholar 

  • Pani B, Singh BB (2009) Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 45(6):625–633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parton RG, Way M, Zorzi N, Stang E (1997) Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 136(1):137–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peivandi AA, Huhn A, Lehr HA et al (2005) Upregulation of phospholipase d expression and activation in ventricular pressure-overload hypertrophy. J Pharmacol Sci 98(3):244–254

  • Perez-Reyes E, Castellano A, Kim HS et al (1992) Cloning and expression of a cardiac/brain beta subunit of the L-type calcium channel. J Biol Chem 267(3):1792–1797

  • Petitprez S, Zmoos AF, Ogrodnik J et al (2011) SAP97 and dystrophin macromolecular complexes determine two pools of cardiac sodium channels Nav1.5 in cardiomyocytes. Circ Res 108(3):294–304

    CAS  PubMed  Google Scholar 

  • Poelzing S, Rosenbaum DS (2004) Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 287(4):H1762–H1770

    CAS  PubMed  Google Scholar 

  • Radwanski P, Brunello L, Priori SG et al (2012) Local Na+/Ca2+ signaling contributes to the propensity for arrhythmogenic spontanous Ca2+ waves during catecholaminergic polymorphic ventricular tachycardia (CPVT). Circulation 126:A17691

  • Ratajczak P, Damy T, Heymes C et al (2003) Caveolin-1 and -3 dissociations from caveolae to cytosol in the heart during aging and after myocardial infarction in rat. Cardiovasc Res 57(2):358–369

    CAS  PubMed  Google Scholar 

  • Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467

    CAS  PubMed  Google Scholar 

  • Reynolds JO, Chiang DY, Wang W et al (2013) Junctophilin-2 is necessary for T-tubule maturation during mouse heart development. Cardiovasc Res 100(1):44–53

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rheinlaender JS, Tilman E (2009) Image formation, resolution, and height measurement in scanning ion conductance microscopy. J Appl Phys 105(9):094905 24

  • Richards MA, Clarke JD, Saravanan P et al (2011) Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol 301(5):H1996–H2005

  • Rickert DE, Fischer LJ (1975) Cyproheptadine and beta cell function in the rat: insulin secretion from pancreas segments in vitro. Proc Soc Exp Biol Med 150(1):1–6

    CAS  PubMed  Google Scholar 

  • Rizzo S, Lodder EM, Verkerk AO et al (2012) Intercalated disc abnormalities, reduced Na(+) current density, and conduction slowing in desmoglein-2 mutant mice prior to cardiomyopathic changes. Cardiovasc Res 95(4):409–418

    CAS  PubMed  Google Scholar 

  • Sanchez-Alonso JL, Bhogal N, Glukhov AV, Punjabi PP, Gorelik J (2014) Microdomain specific modulation of single L-type calcium channels revealed by super-resolution scanning patch-clamp in human failing cardiomyocytes. Heart Rhythm. http://ondemand.hrsonline.org/common/presentation-detail.aspx/15/23/1387/9549 

  • Santos PE, Barcellos LC, Mill JG, Masuda MO (1995) Ventricular action potential and L-type calcium channel in infarct-induced hypertrophy in rats. J Cardiovasc Electrophysiol 6(11):1004–1014

    CAS  PubMed  Google Scholar 

  • Sato PY, Musa H, Coombs W et al (2009) Loss of plakophilin-2 expression leads to decreased sodium current and slower conduction velocity in cultured cardiac myocytes. Circ Res 105(6):523–526

  • Sato PY, Coombs W, Lin X et al (2011) Interactions between ankyrin-G, Plakophilin-2, and Connexin43 at the cardiac intercalated disc. Circ Res 109(2):193–201

  • Saucerman JJ, Greenwald EC, Polanowska-Grabowska R (2014) Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol 143(1):39–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schaper J, Kostin S, Hein S, Elsasser A, Arnon E, Zimmermann R (2002) Structural remodelling in heart failure. Exp Clin Cardiol 7(2–3):64–68

    PubMed Central  PubMed  Google Scholar 

  • Schulson MN, Scriven DR, Fletcher P, Moore ED (2011) Couplons in rat atria form distinct subgroups defined by their molecular partners. J Cell Sci 124(Pt 7):1167–1174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scriven DR, Dan P, Moore ED (2000) Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes. Biophys J 79(5):2682–2691

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scriven DR, Asghari P, Moore ED (2013) Microarchitecture of the dyad. Cardiovasc Res 98(2):169–176

    CAS  PubMed  Google Scholar 

  • Severs NJ (2000) The cardiac muscle cell. Bioessays 22(2):188–199

    CAS  PubMed  Google Scholar 

  • Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128(3):547–560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shevchuk AI, Frolenkov GI, Sanchez D et al (2006) Imaging proteins in membranes of living cells by high-resolution scanning ion conductance microscopy. Angew Chem Int Ed Engl 45(14):2212–2216

  • Shibata EF, Brown TL, Washburn ZW, Bai J, Revak TJ, Butters CA (2006) Autonomic regulation of voltage-gated cardiac ion channels. J Cardiovasc Electrophysiol 17[Suppl 1]:S34–S42

    PubMed  Google Scholar 

  • Singer D, Biel M, Lotan I, Flockerzi V, Hofmann F, Dascal N (1991) The roles of the subunits in the function of the calcium channel. Science 253(5027):1553–1557

    CAS  PubMed  Google Scholar 

  • Sipido KR, Cheng H (2013) T-tubules and ryanodine receptor microdomains: on the road to translation. Cardiovasc Res 98(2):159–161

    CAS  PubMed  Google Scholar 

  • Sipido KR, Carmeliet E, Van de Werf F (1998) T-type Ca2+ current as a trigger for Ca2+ release from the sarcoplasmic reticulum in guinea-pig ventricular myocytes. J Physiol 508(Pt 2):439–451

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sipido KR, Acsai K, Antoons G, Bito V, Macquaide N (2013) T-tubule remodelling and ryanodine receptor organization modulate sodium-calcium exchange. Adv Exp Med Biol 961:375–383

    CAS  PubMed  Google Scholar 

  • Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD (2010) Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium 47(3):210–223

    CAS  PubMed  Google Scholar 

  • Smyth JW, Hong TT, Gao D et al (2010) Limited forward trafficking of connexin 43 reduces cell-cell coupling in stressed human and mouse myocardium. J Clin Invest 120(1):266–279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song KS, Scherer PE, Tang Z et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271(25):15160–15165

  • Song LS, Pi Y, Kim SJ et al (2005) Paradoxical cellular Ca2+ signaling in severe but compensated canine left ventricular hypertrophy. Circ Res 97(5):457–464

    CAS  PubMed  Google Scholar 

  • Song LS, Sobie EA, McCulle S, Lederer WJ, Balke CW, Cheng H (2006) Orphaned ryanodine receptors in the failing heart. Proc Natl Acad Sci USA 103(11):4305–4310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spach MS, Miller WT 3rd, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA (1981) The discontinuous nature of propagation in normal canine cardiac muscle. Evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents. Circ Res 48(1):39–54

    CAS  PubMed  Google Scholar 

  • Stangherlin A, Zaccolo M (2012) Phosphodiesterases and subcellular compartmentalized cAMP signaling in the cardiovascular system. Am J Physiol Heart Circ Physiol 302(2):H379–H390

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Takagishi Y, Yasui K, Murata Y, Toyama J, Kodama I (2000) Voltage-gated K(+)Channel, Kv4.2, localizes predominantly to the transverse-axial tubular system of the rat myocyte. J Mol Cell Cardiol 32(7):1361–1369

    CAS  PubMed  Google Scholar 

  • Thomas MJ, Sjaastad I, Andersen K et al (2003) Localization and function of the Na+/Ca2+−exchanger in normal and detubulated rat cardiomyocytes. J Mol Cell Cardiol 35(11):1325–1337

  • Trafford AW, Clarke JD, Richards MA, Eisner DA, Dibb KM (2013) Calcium signalling microdomains and the t-tubular system in atrial mycoytes: potential roles in cardiac disease and arrhythmias. Cardiovasc Res 98(2):192–203

    CAS  PubMed  Google Scholar 

  • Vaidyanathan R, Vega AL, Song C et al (2013) The interaction of caveolin 3 protein with the potassium inward rectifier channel Kir2.1: physiology and pathology related to long qt syndrome 9 (LQT9). J Biol Chem 288(24):17472–17480

  • van Veen TA, van Rijen HV, Jongsma HJ (2006) Physiology of cardiovascular gap junctions. Adv Cardiol 42:18–40

    PubMed  Google Scholar 

  • Vatta M, Ackerman MJ, Ye B et al (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114(20):2104–2112

    CAS  PubMed  Google Scholar 

  • Wang YG, Dedkova EN, Ji X, Blatter LA, Lipsius SL (2005) Phenylephrine acts via IP3-dependent intracellular NO release to stimulate L-type Ca2+ current in cat atrial myocytes. J Physiol 567(Pt 1):143–157

    CAS  PubMed Central  PubMed  Google Scholar 

  • Warrier S, Ramamurthy G, Eckert RL, Nikolaev VO, Lohse MJ, Harvey RD (2007) cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes. J Physiol 580(Pt.3):765–776

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei CJ, Francis R, Xu X, Lo CW (2005) Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J Biol Chem 280(20):19925–19936

    CAS  PubMed  Google Scholar 

  • Wei S, Guo A, Chen B et al (2010) T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res 107(4):520–531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiegerinck RF, de Bakker JM, Opthof T et al (2009) The effect of enhanced gap junctional conductance on ventricular conduction in explanted hearts from patients with heart failure. Basic Res Cardiol 104(3):321–332

  • Willoughby D, Cooper DM (2007) Organization and Ca2+ regulation of adenylyl cyclases in cAMP microdomains. Physiol Rev 87(3):965–1010

    CAS  PubMed  Google Scholar 

  • Winslow RL, Greenstein JL (2011) Cardiac myocytes and local signaling in nano-domains. Prog Biophys Mol Biol 107(1):48–59

    PubMed Central  PubMed  Google Scholar 

  • Woo SH, Cleemann L, Morad M (2003) Spatiotemporal characteristics of junctional and nonjunctional focal Ca2+ release in rat atrial myocytes. Circ Res 92(1):e1–e11

    CAS  PubMed  Google Scholar 

  • Wu X, Eder P, Chang B, Molkentin JD (2010) TRPC channels are necessary mediators of pathologic cardiac hypertrophy. Proc Natl Acad Sci USA 107(15):7000–7005

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada Y, Nagashima M, Tsutsuura M et al (2001) Cloning of a functional splice variant of L-type calcium channel beta 2 subunit from rat heart. J Biol Chem 276(50):47163–47170

  • Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295(5560):1711–1715

    CAS  PubMed  Google Scholar 

  • Zhang P, Mende U (2011) Regulators of G-protein signaling in the heart and their potential as therapeutic targets. Circ Res 109(3):320–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang XQ, Moore RL, Tillotson DL, Cheung JY (1995) Calcium currents in postinfarction rat cardiac myocytes. Am J Physiol 269(6 Pt 1):C1464–C1473

    CAS  PubMed  Google Scholar 

  • Zhang C, Chen B, Guo A et al (2014) Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte transverse-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 129(17):1742–1750

    CAS  PubMed  Google Scholar 

  • Zhou Z, January CT (1998) Both T- and L-type Ca2+ channels can contribute to excitation-contraction coupling in cardiac Purkinje cells. Biophys J 74(4):1830–1839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A (2007) ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol 103(5):1888–1893

Download references

Acknowledgements

We thank Ms Navneet Bhogal and Dr Ivan Diakonov for helpful discussion and correction of the manuscript.

Compliance with Ethics Guidelines

Funding

This work was primarily supported by Wellcome Trust WT090594 and British Heart Foundation12/18/30088 to JG.

Conflict of interest

Marina Balycheva, Giuseppe Faggian, Alexey V. Glukhov, and Julia Gorelik declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by theany of the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexey V. Glukhov or Julia Gorelik.

Additional information

Special Issue: Biophysics of Human Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balycheva, M., Faggian, G., Glukhov, A.V. et al. Microdomain–specific localization of functional ion channels in cardiomyocytes: an emerging concept of local regulation and remodelling. Biophys Rev 7, 43–62 (2015). https://doi.org/10.1007/s12551-014-0159-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-014-0159-x

Keywords

Navigation