[go: up one dir, main page]

Skip to main content
Log in

Self-generating nanogaps for highly effective surface-enhanced Raman spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

The fabrication of surface enhanced Raman spectroscopy (SERS) substrates with controlled high density hot spots still remains challenging. Herein, we report highly effective SERS substrates containing the self-generating (SG) nanogaps from polystyrene nanosphere monolayer through isotropic plasma etching. The emergence of multimode hot spots, i.e., metal film over nanosphere (MFON)-like hot spots (closed gaps, 0 nm), individual self-aligned hot spots (discrete gaps, > 20 nm) and three-dimensional (3D) hot spots (nanogaps, 1–10 nm), makes the SG SERS substrates superior as compared to the traditional MFON or the well-ordered self-aligned SERS substrates in terms of enhancement, uniformity, and reproducibility. The SG SERS substrates can function as the excellent SERS platforms for trace molecule detection in the practical application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleischmann M., Hendra P. J., McQuillan A. J. Raman-spectra of pyridine adsorbed at a silver ELectrode. Chem. Phys. Lett. 1974, 26, 163–166.

    Article  CAS  Google Scholar 

  2. Kleinman S. L., Ringe E., Valley N., Wustholz K. L., Phillips E., Scheidt K. A., Schatz G. C., Van Duyne R. P. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: Theory and experiment. J. Am. Chem. Soc. 2011, 133, 4115–4122.

    Article  CAS  Google Scholar 

  3. Liu Y., Tian X. R., Guo W. R., Wang W. Q., Guan Z. Q., Xu H. X. Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Res. 2019, 12, 1643–1649.

    Article  Google Scholar 

  4. Kurouski D., Zaleski S., Casadio F., Van Duyne R. P., Shah N. C. Tip-enhanced raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 2014, 136, 8677–8684.

    Article  CAS  Google Scholar 

  5. Wang H. Y., Zhou Y. F., Jiang X. X., Sun B., Zhu Y., Wang H., Su Y. Y., He Y. Simultaneous capture, detection, and inactivation of bacteria as enabled by a surface-enhanced Raman scattering multifunctional chip. Angew. Chem., Int. Ed. 2015, 54, 5132–5136.

    Article  CAS  Google Scholar 

  6. Schatz, G. C.; Van Duyne, R. P. Electromagnetic mechanism of surface-enhanced spectroscopy. In Handbook of Vibrational Spectroscopy. Chalmers, J. M.; Griffiths, P. R., Eds.; John Wiley & Sons: Chichester, 2002; pp 759–774.

    Google Scholar 

  7. Im H., Bantz K. C., Lindquist N. C., Haynes C. L., Oh S. H. Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 2010, 10, 2231–2236.

    Article  CAS  Google Scholar 

  8. Chirumamilla M., Toma A., Gopalakrishnan A., Das G., Zaccaria R. P., Krahne R., Rondanina E., Leoncini M., Liberale C., De Angelis F., et al. 3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced Raman scattering. Adv. Mater. 2014, 26, 2353–2358.

    Article  CAS  Google Scholar 

  9. Yan Z. X., Zhang Y. L., Wang W., Fu X. Y., Jiang H. B., Liu Y. Q., Verma P., Kawata S., Sun H. B. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference. ACS Appl. Mater. Interfaces 2015, 7, 27059–27065.

    Article  CAS  Google Scholar 

  10. Sharma B., Cardinal M. F., Kleinman S. L., Greeneltch N. G., Frontiera R. R., Blaber M. G., Schatz G. C., Van Duyne R. P. High-performance SERS substrates: Advances and challenges. MRS Bull. 2013, 38, 615–624.

    Article  CAS  Google Scholar 

  11. Yu J., Yang M. S., Li Z., Liu C. D., Wei Y. S., Zhang C., Man B. Y., Lei F. C. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants. Anal. Chem. 2020, 92, 14754–14761.

    Article  CAS  Google Scholar 

  12. Jiang B., Xu L., Chen W., Zou C., Yang Y., Fu Y. Z., Huang S. M. Ag+-assisted heterogeneous growth of concave Pd@Au nanocubes for surface enhanced Raman scattering (SERS). Nano Res. 2017, 10, 3509–3521.

    Article  CAS  Google Scholar 

  13. Wang Y. D., Zhang M. Y., Lai Y. K., Chi L. F. Advanced colloidal lithography: From patterning to applications. Nano Today 2018, 22, 36–61.

    Article  Google Scholar 

  14. Wang Y. D., Lu N., Wang W. T., Liu L. X., Feng L., Zeng Z. F., Li H. B., Xu W. Q., Wu Z. J., Hu W., et al. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

    Article  CAS  Google Scholar 

  15. Wang Y. D., Lu N., Xu H. B., Shi G., Xu M. J., Lin X. W., Li H. B., Wang W. T., Qi D. P., Lu Y. Q., et al. Biomimetic corrugated silicon nanocone arrays for self-cleaning antireflection coatings. Nano Res. 2010, 3, 520–527.

    Article  CAS  Google Scholar 

  16. Wang Y. D., Zeng Z. F., Li J., Chi L. F., Guo X. H., Lu N. Biomimetic antireflective silicon nanocones array for small molecules analysis. J. Am. Soc. Mass Spectrom. 2013, 24, 66–73.

    Article  CAS  Google Scholar 

  17. Ellinas K., Tserepi A., Gogolides E. From superamphiphobic to amphiphilic polymeric surfaces with ordered hierarchical roughness fabricated with colloidal lithography and Plasma nanotexturing. Langmuir 2011, 27, 3960–3969.

    Article  CAS  Google Scholar 

  18. Choi D. G., Jang S. G., Kim S., Lee E., Han C. S., Yang S. M. Multifaceted and nanobored particle arrays sculpted using colloidal lithography. Adv. Funct. Mater. 2006, 16, 33–40.

    Article  CAS  Google Scholar 

  19. Zhang X. Y., Yonzon C. R., Van Duyne R. P. Nanosphere lithography fabricated plasmonic materials and their applications. J. Mater. Res. 2006, 21, 1083–1092.

    Article  CAS  Google Scholar 

  20. Fang Y., Seong N. H., Dlott D. D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science 2008, 321, 388–392.

    Article  CAS  Google Scholar 

  21. Fang Y., Yang H. T., Jiang P., Dlott D. D. The distributions of enhancement factors in close-packed and nonclose-packed surface-enhanced Raman substrates. J. of Raman Spectrosc. 2012, 43, 389–395.

    Article  CAS  Google Scholar 

  22. Ding T., Herrmann L. O., De Nijs, B., Benz F., Baumberg J. J. Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps. Small 2015, 11, 2139–2143.

    Article  CAS  Google Scholar 

  23. Plettl A., Enderle F., Saitner M., Manzke A., Pfahler C., Wiedemann S., Ziemann P. Non-close-packed crystals from self-assembled polystyrene spheres by isotropic Plasma etching: Adding flexibility to colloid lithography. Adv. Funct. Mater. 2009, 19, 3279–3284.

    Article  CAS  Google Scholar 

  24. Ji D. Y., Wang Y. D., Chi L. F., Fuchs H. Enhanced charge injection through nanostructured electrodes for organic field effect transistors. Adv. Funct. Mater. 2015, 25, 3855–3859.

    Article  CAS  Google Scholar 

  25. Yin J., Zang Y. S., Yue C., Wu Z. M., Wu S. T., Li J., Wu Z. H. Ag nanoparticle/ZnO hollow nanosphere arrays: Large scale synthesis and surface plasmon resonance effect induced Raman scattering enhancement. J. Mater. Chem. 2012, 22, 7902–7909.

    Article  CAS  Google Scholar 

  26. Li J. F., Huang Y. F., Ding Y., Yang Z. L., Li S. B., Zhou X. S., Fan F. R., Zhang W., Zhou Z. Y., Wu D. Y., et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

    Article  CAS  Google Scholar 

  27. Li J. F., Zhang Y. J., Ding S. Y., Panneerselvam R., Tian Z. Q. Core-shell nanoparticle-enhanced raman spectroscopy. Chem. Rev. 2017, 117, 5002–5069.

    Article  CAS  Google Scholar 

  28. Liu G. Q., Li X. H., Wang W. B., Zhou F., Duan G. T., Li Y., Xu Z. K., Cai W. P. Gold binary-structured arrays based on monolayer colloidal crystals and their optical properties. Small 2014, 10, 2374–2381.

    Article  CAS  Google Scholar 

  29. Wendisch F. J., Oberreiter R., Salihovic M., Elsaesser M. S., Bourret G. R. Confined etching within 2D and 3D colloidal crystals for tunable nanostructured templates: Local environment matters. ACS Appl. Mater. Interfaces 2017, 9, 3931–3939.

    Article  CAS  Google Scholar 

  30. Liu Y. S., Luo F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

    Article  Google Scholar 

  31. Natan M. J. Concluding remarks-Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321–328.

    Article  CAS  Google Scholar 

  32. Wang Y. D., Zhang M. Y., Feng L., Dong B., Xu T., Li D., Jiang L., Chi L. F. Tape-imprinted hierarchical lotus seedpod-like arrays for extraordinary surface-enhanced Raman spectroscopy. Small 2019, 15, 1804527.

    Article  Google Scholar 

  33. Oh Y. J., Jeong K. H. Glass Nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234–2237.

    Article  CAS  Google Scholar 

  34. Wang X. Z., Wang Z., Zhang M., Jiang X. S., Wang Y. F., Lv J. G., He G., Sun Z. Q. Three-dimensional hierarchical anatase@rutile TiO2 nanotree array films decorated by silver nanoparticles as ultrasensitive recyclable surface-enhanced Raman scattering substrates. J. Alloys Compd. 2017, 725, 1166–1174.

    Article  CAS  Google Scholar 

  35. Cai W. B., Ren B., Li X. Q., She C. X., Liu F. M., Cai X. W., Tian Z. Q. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: Dependence of surface roughening pretreatment. Surf. Sci. 1998, 406, 9–22.

    Article  CAS  Google Scholar 

  36. Ingram W. M., Han C. Q., Zhang Q. J., Zhao Y. P. Optimization of Ag-coated polystyrene nanosphere substrates for quantitative surface-enhanced Raman spectroscopy analysis. J. Phys. Chem. C 2015, 119, 27639–27648.

    Article  CAS  Google Scholar 

  37. Liu B. H., Han G. M., Zhang Z. P., Liu R. Y., Jiang C. L., Wang S. H., Han M. Y. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Analy. Chem. 2012, 84, 255–261.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Nos. 51821002 and 21790053) and the China Postdoctoral Science Foundation (No. 2016M591908).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhoufang Zeng, Yandong Wang or Lifeng Chi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, H., Chen, J. et al. Self-generating nanogaps for highly effective surface-enhanced Raman spectroscopy. Nano Res. 15, 3496–3503 (2022). https://doi.org/10.1007/s12274-021-3924-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3924-8

Keywords