[go: up one dir, main page]

Skip to main content
Log in

Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Kepler’s central force problem

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper presents theoretical investigation on the self-action effects of intense laser beams propagating through collisional plasmas. Particularly, the phenomena of self-focussing, self-trapping and self-phase modulation of the laser beam have been investigated in detail. In order to see the effect of uniformity as well as non-uniformity of the irradiance over the cross-section of the laser beam on its propagation characteristics field distribution in the medium has been expressed in terms of quadruple Gaussian (QG) profile instead of Gaussian profile. Following the moment theory approach, the nonlinear partial differential equation for the slowly varying envelope of the laser beam has been reduced to a set of coupled ordinary differential equations for the evolution of beam width and longitudinal phase. The equations so obtained have been solved numerically to envision the effect of laser as well as medium parameters on the propagation characteristics of the laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. T H Maiman, Nature 187, 493 (1960)

  2. E Esarey, P Sprangle, J Krall and A Ting, IEEE Trans. Plasma Sci. 24, 252 (1996)

    Article  ADS  Google Scholar 

  3. T Tajima and J M Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  4. S P D Mangles, C D Murphy, Z Najmudin, A G R Thomas, J L Collier, A E Dangor, E J Divall, P S Foster, J G Gallacher, C J Hooker, D A Jaroszynski, A J Langley, W B Mori, P A Norreys, F S Tsung, R Viskup, B R Walton and K Krushelnick, Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  5. N H Burnett and G D Enright, IEEE J. Quantum Electron. 26, 1797 (1990)

    Article  ADS  Google Scholar 

  6. P Amendt, D C Eder and S C Wilks, Phys. Rev. Lett. 66, 2589 (1991)

    Article  ADS  Google Scholar 

  7. C Deutsch, H Furukawa, K Mima, M Murakami and K Nishihara, Phys. Rev. Lett. 77, 2483 (1996)

    Article  ADS  Google Scholar 

  8. M Tabak, J Hammer, M E Glinsky, W L Kruer, S C Wilks, J Woodworth, E M Campbell, M D Perry and R J Mason, Phys. Plasmas 1, 1626 (1994)

    Article  ADS  Google Scholar 

  9. H Hora, Laser Part. Beams 25, 37 (2007)

    Article  ADS  Google Scholar 

  10. A Ting, K Krushelnick, H R Burris, A Fisher, C Manka and C I Moore, Opt. Lett. 21, 1096 (1996)

    Article  ADS  Google Scholar 

  11. G A J Askaran, Exp. Theor. Phys. 15, 1088 (1962)

    Google Scholar 

  12. A I Akhiezer and R V Polovin, Sov. Phys. JETP 3, 696 (1956)

    Google Scholar 

  13. A Singh and N Gupta, Phys. Plasmas 22, 062115 (2015)

    Article  ADS  Google Scholar 

  14. A Kumar, Plasmonics 8, 1135 (2013)

    Article  Google Scholar 

  15. A Singh and N Gupta, Cont. Plasma Phys. 55, 501 (2015)

    Article  ADS  Google Scholar 

  16. D N Gupta and H Suk, Phys. Plasmas 18, 124501 (2011)

    Article  ADS  Google Scholar 

  17. N Gupta, N Singh and A Singh, Phys. Plasmas 22, 113106 (2015)

    Article  ADS  Google Scholar 

  18. N Singh, N Gupta and A Singh, Opt. Commun. 381, 180 (2016)

    Article  ADS  Google Scholar 

  19. L G Gouy, C. R. Acad. Sci. Paris Ser. IV 110, 1251 (1890)

    Google Scholar 

  20. R W J Boyd, Opt. Soc. Am. 70, 877 (1980)

    Article  ADS  Google Scholar 

  21. S Feng and H G Winful, Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  22. P Hariharan and P A Robinson, J. Mod. Opt. 43, 219 (1996)

    ADS  Google Scholar 

  23. J Yang and H G Winful, Opt. Lett. 31, 104 (2006)

    Article  ADS  Google Scholar 

  24. R Y Chiao, E Garmire and C H Townes, Phys. Rev. Lett. 13, 479 (1965)

    Article  ADS  Google Scholar 

  25. P L Kelley, Phys. Rev. Lett. 15, 1005 (1965)

    Article  ADS  Google Scholar 

  26. R R Alfano and S L Shapiro, Phys. Rev. Lett. 24, 592 (1970)

    Article  ADS  Google Scholar 

  27. T K Gustafson, J P Taran, H A Haus, J R Lifsitz and P L Kelley, Phys. Rev. 177, 306 (1969)

    Article  ADS  Google Scholar 

  28. M Karlsson, Phys. Rev. A 46, 2726 (1992)

    Article  ADS  Google Scholar 

  29. J T Manassah, P L Baldeck and R R Alfano, Opt. Lett. 13, 589 (1988)

    Article  ADS  Google Scholar 

  30. M Karlsson, D Anderson and M Desaix, Opt. Lett. 17, 22 (1992)

    Article  ADS  Google Scholar 

  31. M Habibi and F Ghamari, Phys. Plasmas 19, 113109 (2012)

    Article  ADS  Google Scholar 

  32. M Habibi and F Ghamari, Phys. Plasmas 19, 103110 (2012)

    Article  ADS  Google Scholar 

  33. D N Gupta, M S Hur and H Suk, Appl. Phys. Lett. 91, 081505 (2007)

    Article  ADS  Google Scholar 

  34. P Sati, A Sharma and V K Tripathi, Phys. Plasmas 19, 092117 (2012)

    Article  ADS  Google Scholar 

  35. M Moshkelgosha, IEEE Trans. Plasma Sci. 44, 894 (2016)

    Article  ADS  Google Scholar 

  36. Y Wang, C Yuan, Z Zhou, L Li and Y Du, Phys. Plasmas 18, 113105 (2011)

    Article  ADS  Google Scholar 

  37. M S Sodha, A K Ghatak and V K Tripathi, Progress in optics edited by E Wolf (North Holland, Amsterdam, 1976) Vol. 13, p. 169

  38. T Taniuti and H Washimi, Phys. Rev. Lett. 21, 209 (1968)

    Article  ADS  Google Scholar 

  39. M J Ablowitz and H J Segur, Fluid Mech. 92, 691 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  40. J F Lam, B Lippmann and F Tappert, Phys. Fluids 20, 1176 (1977)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Kumar, S. Self-action effects of quadruple-Gaussian laser beams in collisional plasmas and their resemblance to Kepler’s central force problem. Pramana - J Phys 95, 53 (2021). https://doi.org/10.1007/s12043-021-02079-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02079-z

Keywords

PACS No

Navigation