[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Potential Protective Effect of Riboflavin Against Pathological Changes in the Main Organs of Male Mice Induced by Fluoride Exposure

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Long-term exposure to excessive fluorine could cause damage to various tissues and organs in human and animals. However, there is no effective antidote to prevent and cure fluorosis except for avoiding fluoride intake. As an essential nutrient, riboflavin (VB2) has been identified to relieve oxidative stress and inflammation in animal tissues caused by other toxic substances, whether it can alleviate the damage caused by fluoride is unknown. For this, 32 ICR male mice were allocated to four groups of eight each. They were treated with 0 (distilled water), 100 mg/L sodium fluoride (NaF), 40 mg/L VB2, and their combination (100 mg/L NaF plus 40 mg/L VB2) via the drinking water for 90 consecutive days, respectively. The content of bone fluoride and the histomorphology of the main organs including liver, kidney, cerebral cortex, epididymis, small intestine, and colon were evaluated and pathologically scored. The results found that fluoride caused the pathological changes in liver, kidney, cerebral cortex, epididymis, small intestine, and colon at varying degrees, while riboflavin supplementation reduced significantly the accumulation of fluoride in bone, alleviated the morphological damage to cerebral cortex, epididymis, ileum, and colon. This study provides new clues for deeply exploring the mechanism of riboflavin intervention in fluorosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

References

  1. Everett ET (2011) Fluoride’s effects on the formation of teeth and bones, and the influence of genetics. J Dent Res 90:552–560. https://doi.org/10.1177/0022034510384626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Herrera PK, Zambolin AP, da S Fernandes M et al (2017) Fluoride affects bone repair differently in mice models with distinct bone densities. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 39:129–134. https://doi.org/10.1016/j.jtemb.2016.09.004

    Article  CAS  Google Scholar 

  3. Jha SK, Mishra VK, Sharma DK, Damodaran T (2011) Fluoride in the environment and its metabolism in humans. Rev Environ Contam Toxicol 211:121–142. https://doi.org/10.1007/978-1-4419-8011-3_4

    Article  CAS  PubMed  Google Scholar 

  4. Hossain M, Patra PK (2020) Hydrogeochemical characterisation and health hazards of fluoride enriched groundwater in diverse aquifer types. Environ Pollut Barking Essex 1987 258:113646. https://doi.org/10.1016/j.envpol.2019.113646

    Article  CAS  Google Scholar 

  5. Rashid A, Farooqi A, Gao X et al (2020) Geochemical modeling, source apportionment, health risk exposure and control of higher fluoride in groundwater of sub-district Dargai, Pakistan. Chemosphere 243:125409. https://doi.org/10.1016/j.chemosphere.2019.125409

    Article  CAS  PubMed  Google Scholar 

  6. Luo Q, Cui H, Peng X et al (2013) Suppressive effects of dietary high fluorine on the intestinal development in broilers. Biol Trace Elem Res 156:153–165. https://doi.org/10.1007/s12011-013-9845-y

    Article  CAS  PubMed  Google Scholar 

  7. Perera T, Ranasinghe S, Alles N, Waduge R (2018) Effect of fluoride on major organs with the different time of exposure in rats. Environ Health Prev Med 23:17. https://doi.org/10.1186/s12199-018-0707-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shen Q-F, Xia Y-P, Xu T-T (2019) Matrix metalloproteinase-9 and p53 involved in chronic fluorosis induced blood-brain barrier damage and neurocyte changes. Arch Med Sci 15:457–466. https://doi.org/10.5114/aoms.2019.83294

    Article  CAS  Google Scholar 

  9. Han Y, Yu Y, Liang C et al (2019) Fluoride-induced unrestored arrest during haploid period of spermatogenesis via the regulation of DDX25 in rats. Environ Pollut Barking Essex 1987 253:538–551. https://doi.org/10.1016/j.envpol.2019.06.107

    Article  CAS  Google Scholar 

  10. Saedisomeolia A, Ashoori M (2018) Riboflavin in human health: a review of current evidences. Adv Food Nutr Res 83:57–81. https://doi.org/10.1016/bs.afnr.2017.11.002

    Article  PubMed  Google Scholar 

  11. Colasuonno F, Niceforo A, Marioli C et al (2020) Mitochondrial and peroxisomal alterations contribute to energy dysmetabolism in riboflavin transporter deficiency. Oxid Med Cell Longev 2020:6821247. https://doi.org/10.1155/2020/6821247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wei Z, Xi J, Gao S et al (2018) Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Sci Rep 8:5423. https://doi.org/10.1038/s41598-018-23484-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nakano E, Mushtaq S, Heath PR et al (2011) Riboflavin depletion impairs cell proliferation in adult human duodenum: identification of potential effectors. Dig Dis Sci 56:1007–1019. https://doi.org/10.1007/s10620-010-1374-3

    Article  CAS  PubMed  Google Scholar 

  14. Williams EA, Rumsey RD, Powers HJ (1996) Cytokinetic and structural responses of the rat small intestine to riboflavin depletion. Br J Nutr 75:315–324. https://doi.org/10.1079/bjn19960133

    Article  CAS  PubMed  Google Scholar 

  15. Yates CA, Evans GS, Powers HJ (2001) Riboflavin deficiency: early effects on post-weaning development of the duodenum in rats. Br J Nutr 86:593–599. https://doi.org/10.1079/bjn2001420

    Article  CAS  PubMed  Google Scholar 

  16. Vijayalakshhmi B, Sesikeran B, Udaykumar P et al (2005) Effects of vitamin restriction and supplementation on rat intestinal epithelial cell apoptosis. Free Radic Biol Med 38:1614–1624. https://doi.org/10.1016/j.freeradbiomed.2005.02.029

    Article  CAS  PubMed  Google Scholar 

  17. Betz AL, Ren XD, Ennis SR, Hultquist DE (1994) Riboflavin reduces edema in focal cerebral ischemia. Acta Neurochir Suppl (Wien) 60:314–317. https://doi.org/10.1007/978-3-7091-9334-1_84

    Article  CAS  Google Scholar 

  18. Mack CP, Hultquist DE, Shlafer M (1995) Myocardial flavin reductase and riboflavin: a potential role in decreasing reoxygenation injury. Biochem Biophys Res Commun 212:35–40. https://doi.org/10.1006/bbrc.1995.1932

    Article  CAS  PubMed  Google Scholar 

  19. Seekamp A, Hultquist DE, Till GO (1999) Protection by vitamin B2 against oxidant-mediated acute lung injury. Inflammation 23:449–460. https://doi.org/10.1023/a:1021965026580

    Article  CAS  PubMed  Google Scholar 

  20. Al-Harbi NO, Imam F, Nadeem A et al (2014) Carbon tetrachloride-induced hepatotoxicity in rat is reversed by treatment with riboflavin. Int Immunopharmacol 21:383–388. https://doi.org/10.1016/j.intimp.2014.05.014

    Article  CAS  PubMed  Google Scholar 

  21. Ridzuan NRA, Rashid NA, Othman F et al (2019) Protective role of natural products in cisplatin-induced nephrotoxicity. Mini Rev Med Chem 19:1134–1143. https://doi.org/10.2174/1389557519666190320124438

    Article  CAS  PubMed  Google Scholar 

  22. Hassan I, Ebaid H, Alhazza IM, Al-Tamimi J (2020) The alleviative effect of vitamin B2 on potassium bromate-induced hepatotoxicity in male rats. BioMed Res Int 2020:8274261. https://doi.org/10.1155/2020/8274261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stepanova A, Sosunov S, Niatsetskaya Z et al (2019) Redox-dependent loss of flavin by mitochondrial complex I in brain ischemia/reperfusion injury. Antioxid Redox Signal 31:608–622. https://doi.org/10.1089/ars.2018.7693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin C, Yonezawa A, Yoshimatsu H et al (2020) Effect of riboflavin deficiency on development of the cerebral cortex in Slc52a3 knockout mice. Sci Rep 10:18443. https://doi.org/10.1038/s41598-020-75601-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dasarathy S, Das TK, Gupta IP et al (1996) Gastroduodenal manifestations in patients with skeletal fluorosis. J Gastroenterol 31:333–337. https://doi.org/10.1007/BF02355021

    Article  CAS  PubMed  Google Scholar 

  26. Zhou B, Zhao J, Liu J et al (2015) Fluoride-induced oxidative stress is involved in the morphological damage and dysfunction of liver in female mice. Chemosphere 139:504–511. https://doi.org/10.1016/j.chemosphere.2015.08.030

    Article  CAS  PubMed  Google Scholar 

  27. Cao K, Xiang J, Dong Y-T et al (2019) Exposure to fluoride aggravates the impairment in learning and memory and neuropathological lesions in mice carrying the APP/PS1 double-transgenic mutation. Alzheimers Res Ther 11:35. https://doi.org/10.1186/s13195-019-0490-3

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jiang P, Li G, Zhou X et al (2019) Chronic fluoride exposure induces neuronal apoptosis and impairs neurogenesis and synaptic plasticity: role of GSK-3β/β-catenin pathway. Chemosphere 214:430–435. https://doi.org/10.1016/j.chemosphere.2018.09.095

    Article  CAS  PubMed  Google Scholar 

  29. Kanagaraj VV, Panneerselvam L, Govindarajan V et al (2015) Caffeic acid, a phyto polyphenol mitigates fluoride induced hepatotoxicity in rats: a possible mechanism. BioFactors Oxf Engl 41:90–100. https://doi.org/10.1002/biof.1203

    Article  CAS  Google Scholar 

  30. Zhao Q, Tian Z, Zhou G et al (2020) SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of resveratrol against neurodevelopment damage by fluoride. Theranostics 10:4822–4838. https://doi.org/10.7150/thno.42387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Radovanović J, Antonijević B, Kolarević S et al (2021) Genotoxicity of fluoride subacute exposure in rats and selenium intervention. Chemosphere 266:128978. https://doi.org/10.1016/j.chemosphere.2020.128978

    Article  CAS  PubMed  Google Scholar 

  32. Sinha T, Naash MI, Al-Ubaidi MR (2020) Flavins act as a critical liaison between metabolic homeostasis and oxidative stress in the retina. Front Cell Dev Biol 8:861. https://doi.org/10.3389/fcell.2020.00861

    Article  PubMed  PubMed Central  Google Scholar 

  33. von Martels JZH, Bourgonje AR, Klaassen MAY et al (2020) Riboflavin supplementation in patients with Crohn’s disease [the RISE-UP study]. J Crohns Colitis 14:595–607. https://doi.org/10.1093/ecco-jcc/jjz208

    Article  Google Scholar 

  34. Gu Y, Huang Y, Qiu Z et al (2020) Vitamin B2 functionalized iron oxide nanozymes for mouth ulcer healing. Sci China Life Sci 63:68–79. https://doi.org/10.1007/s11427-019-9590-6

    Article  CAS  PubMed  Google Scholar 

  35. Naghashpour M, Amani R, Sarkaki A et al (2016) Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis. Iran J Basic Med Sci 19:439–448

    PubMed  PubMed Central  Google Scholar 

  36. Kietzmann T (2017) Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 11:622–630. https://doi.org/10.1016/j.redox.2017.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Walesky CM, Kolb KE, Winston CL et al (2020) Functional compensation precedes recovery of tissue mass following acute liver injury. Nat Commun 11:5785. https://doi.org/10.1038/s41467-020-19558-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou B-H, Wei S-S, Jia L-S et al (2020) Drp1/Mff signaling pathway is involved in fluoride-induced abnormal fission of hepatocyte mitochondria in mice. Sci Total Environ 725:138192. https://doi.org/10.1016/j.scitotenv.2020.138192

    Article  CAS  PubMed  Google Scholar 

  39. Wang H-W, Liu J, Wei S-S et al (2020) Mitochondrial respiratory chain damage and mitochondrial fusion disorder are involved in liver dysfunction of fluoride-induced mice. Chemosphere 241:125099. https://doi.org/10.1016/j.chemosphere.2019.125099

    Article  CAS  PubMed  Google Scholar 

  40. Sanches SC, Ramalho LNZ, Mendes-Braz M et al (2014) Riboflavin (vitamin B-2) reduces hepatocellular injury following liver ischaemia and reperfusion in mice. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc 67:65–71. https://doi.org/10.1016/j.fct.2014.02.013

    Article  CAS  Google Scholar 

  41. Song GH, Gao JP, Wang CF et al (2014) Sodium fluoride induces apoptosis in the kidney of rats through caspase-mediated pathways and DNA damage. J Physiol Biochem 70:857–868. https://doi.org/10.1007/s13105-014-0354-z

    Article  CAS  PubMed  Google Scholar 

  42. Qin S-L, Deng J, Lou D-D et al (2015) The decreased expression of mitofusin-1 and increased fission-1 together with alterations in mitochondrial morphology in the kidney of rats with chronic fluorosis may involve elevated oxidative stress. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS 29:263–268. https://doi.org/10.1016/j.jtemb.2014.06.001

    Article  CAS  Google Scholar 

  43. Hassan I, Naseem I, Aman S, Alhazza IM (2016) Age affects the mitigating efficacy of riboflavin against cisplatin-induced toxicity in vivo. Nutr Cancer 68:1381–1393. https://doi.org/10.1080/01635581.2016.1225106

    Article  CAS  PubMed  Google Scholar 

  44. Liang J, Wu Y, Yuan H et al (2019) Dendrobium officinale polysaccharides attenuate learning and memory disabilities via anti-oxidant and anti-inflammatory actions. Int J Biol Macromol 126:414–426. https://doi.org/10.1016/j.ijbiomac.2018.12.230

    Article  CAS  PubMed  Google Scholar 

  45. Chen H, Wang Y, Tu W et al (2021) Effects of photobiomodulation combined with MSCs transplantation on the repair of spinal cord injury in rat. J Cell Physiol 236:921–930. https://doi.org/10.1002/jcp.29902

    Article  CAS  PubMed  Google Scholar 

  46. Lou D-D, Guan Z-Z, Liu Y-J et al (2013) The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain. Arch Toxicol 87:449–457. https://doi.org/10.1007/s00204-012-0942-z

    Article  CAS  PubMed  Google Scholar 

  47. Ge Y, Chen L, Yin Z et al (2018) Fluoride-induced alterations of synapse-related proteins in the cerebral cortex of ICR offspring mouse brain. Chemosphere 201:874–883. https://doi.org/10.1016/j.chemosphere.2018.02.167

    Article  CAS  PubMed  Google Scholar 

  48. Hoane MR, Wolyniak JG, Akstulewicz SL (2005) Administration of riboflavin improves behavioral outcome and reduces edema formation and glial fibrillary acidic protein expression after traumatic brain injury. J Neurotrauma 22:1112–1122. https://doi.org/10.1089/neu.2005.22.1112

    Article  PubMed  Google Scholar 

  49. Hassan I, Chibber S, Khan AA, Naseem I (2013) Cisplatin-induced neurotoxicity in vivo can be alleviated by riboflavin under photoillumination. Cancer Biother Radiopharm 28:160–168. https://doi.org/10.1089/cbr.2012.1312

    Article  CAS  PubMed  Google Scholar 

  50. Sun Z, Li S, Yu Y et al (2018) Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch Toxicol 92:169–180. https://doi.org/10.1007/s00204-017-2054-2

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Liang C, Gao Y et al (2019) Fluoride interferes with the sperm fertilizing ability via downregulated SPAM1, ACR, and PRSS21 expression in rat epididymis. J Agric Food Chem 67:5240–5249. https://doi.org/10.1021/acs.jafc.9b01114

    Article  CAS  PubMed  Google Scholar 

  52. Ozaki Y, Reinhard JF, Nichol CA (1986) Cofactor activity of dihydroflavin mononucleotide and tetrahydrobiopterin for murine epididymal indoleamine 2,3-dioxygenase. Biochem Biophys Res Commun 137:1106–1111. https://doi.org/10.1016/0006-291x(86)90339-6

    Article  CAS  PubMed  Google Scholar 

  53. Ozaki Y, Nichol CA, Duch DS (1987) Utilization of dihydroflavin mononucleotide and superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase. Arch Biochem Biophys 257:207–216. https://doi.org/10.1016/0003-9861(87)90560-1

    Article  CAS  PubMed  Google Scholar 

  54. de Souza Melo CG, Perles JVCM, Zanoni JN et al (2017) Enteric innervation combined with proteomics for the evaluation of the effects of chronic fluoride exposure on the duodenum of rats. Sci Rep 7:1070. https://doi.org/10.1038/s41598-017-01090-y

    Article  CAS  Google Scholar 

  55. Dionizio A, Melo CGS, Sabino-Arias IT et al (2020) Effects of acute fluoride exposure on the jejunum and ileum of rats: insights from proteomic and enteric innervation analysis. Sci Total Environ 741:140419. https://doi.org/10.1016/j.scitotenv.2020.140419

    Article  CAS  PubMed  Google Scholar 

  56. Bodiga VL, Bodiga S, Surampudi S et al (2012) Effect of vitamin supplementation on cisplatin-induced intestinal epithelial cell apoptosis in Wistar/NIN rats. Nutr Burbank Los Angel Cty Calif 28:572–580. https://doi.org/10.1016/j.nut.2011.09.007

    Article  CAS  Google Scholar 

  57. Karakoyun B, Ertaş B, Yüksel M et al (2018) Ameliorative effects of riboflavin on acetic acid-induced colonic injury in rats. Clin Exp Pharmacol Physiol 45:563–572. https://doi.org/10.1111/1440-1681.12894

    Article  CAS  PubMed  Google Scholar 

  58. Li M, Wang J, Wu P et al (2020) Self-recovery study of the adverse effects of fluoride on small intestine: involvement of pyroptosis induced inflammation. Sci Total Environ 742:140533. https://doi.org/10.1016/j.scitotenv.2020.140533

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 32072934), Natural Science Foundation of Shanxi Province (Grant No. 201901D111233), Key Research and Development Project of Shanxi Province (No. 201903D211008), and Top Youth Talent Plan (2019) of Shanxi Province.

Author information

Authors and Affiliations

Authors

Contributions

Xiang Li: conceptualization, investigation, formal analysis, writing—original draft. Jie Yang: investigation, validation. Chen Liang: writing—review & editing. Wei Yang: investigation. Qianlong Zhu, Huifeng Luo, Xueyan Liu: data curation, validation. Jundong Wang: validation. Jianhai Zhang: writing—review & editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Jianhai Zhang.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, J., Liang, C. et al. Potential Protective Effect of Riboflavin Against Pathological Changes in the Main Organs of Male Mice Induced by Fluoride Exposure. Biol Trace Elem Res 200, 1262–1273 (2022). https://doi.org/10.1007/s12011-021-02746-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02746-7

Keywords