[go: up one dir, main page]

Skip to main content
Log in

Research on measurement-device-independent quantum key distribution based on an air-water channel

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A measurement-device-independent quantum key distribution (MDI-QKD) method with an air-water channel is researched. In this method, the underwater vehicle and satellite are the legitimate parties, and the third party is at the airwater interface in order to simplify the unilateral quantum channel to water or air. Considering the condition that both unilateral transmission distance and transmission loss coefficient are unequal, a perfect model of the asymmetric channel is built. The influence of asymmetric channel on system loss tolerance and secure transmission distance is analyzed. The simulation results show that with the increase of the channel’s asymmetric degree, the system loss tolerance will descend, one transmission distance will be reduced while the other will be increased. When the asymmetric coefficient of channel is between 0.068 and 0.171, MDI-QKD can satisfy the demand of QKD with an air-water channel, namely the underwater transmission distance and atmospheric transmission distance are not less than 60 m and 12 km, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, in Proceedings of IEEE International Conference on Computers, Syetems and Signal Processing 175, 1984.

    MATH  Google Scholar 

  2. W Y Hwang, Phys. Rev. Lett. 91, 057901 (2003).

    Article  ADS  Google Scholar 

  3. Y. Y. Zhou, X. J. Zhou, P. G. Tian and Y. J. Wang, Chin. Phys. B 22, 010305 (2013).

    Article  ADS  Google Scholar 

  4. F H Xu, Phys. Rev. A 92, 012333 (2015).

    Article  ADS  Google Scholar 

  5. Y. Y. Zhou and X. J. Zhou, Optoelectron. Lett. 11, 0149 (2015).

    Article  ADS  Google Scholar 

  6. R Rahaman, M G Parker, P Mironowicz and M Pawlowski, Phys. Rev. A. 92, 062304 (2015).

    Article  ADS  Google Scholar 

  7. E A Aguilar, R Ramanathan, J Kofler and M Pawlowski, Phys. Rev. A 94, 022305 (2016).

    Article  ADS  Google Scholar 

  8. Y H Zhou, Z W Yu and X B Wang, Phys. Rev. A 93, 042324 (2016).

    Article  ADS  Google Scholar 

  9. M Schiavon, G Vallone, F Ticozzi and P Villoresi, Phys. Rev. A 93, 012331 (2016).

    Article  ADS  Google Scholar 

  10. H. K. Lo, M. Curty and B. Qi, Phys. Rev. Lett. 108, 130503 (2012).

    Article  ADS  Google Scholar 

  11. X F Ma, C-H F Fung and M Razavi, Phys. Rev. A 86, 052305 (2012).

    Article  ADS  Google Scholar 

  12. Z Y Tang, K J Wei, O Bedroya, L Qian and H L Lo, Phys. Rev. A 93, 042308 (2016).

    Article  ADS  Google Scholar 

  13. Y. Y. Zhou, X. J. Zhou and B B Su, Optoelectron. Lett. 12, 0149 (2016).

    ADS  Google Scholar 

  14. D Chen, S H Zhao, L Shi and Y Liu, Phys. Rev. A 93, 032320 (2016).

    Article  ADS  Google Scholar 

  15. J ARON, New Scientist 212, 23 (2011).

    ADS  Google Scholar 

  16. L MARCO, Underwater Communications, Morgan: Claypool Publishers, 82 (2012).

    Google Scholar 

  17. F Zhou, H L Yong, D D Li, J Yin, J G Ren and C Z Peng, Acta Phys. Sin. 63, 140303 (2014). (in Chinese)

    Google Scholar 

  18. C Dong, S H Zhao, W H Zhao, L Shi and G H Zhao, Acta Phys. Sin. 63, 030302 (2014). (in Chinese)

    Google Scholar 

  19. X F Ma and M Razavi, Phys. Rev. A 86, 062319 (2012).

    Article  ADS  Google Scholar 

  20. S H Sun, M Gao, C Y Li and L M Liang, Phys. Rev. A 87, 052329 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-yuan Zhou  (周媛媛).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61302099).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Yy., Zhou, Xj., Xu, Hb. et al. Research on measurement-device-independent quantum key distribution based on an air-water channel. Optoelectron. Lett. 12, 469–472 (2016). https://doi.org/10.1007/s11801-016-6198-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6198-8