[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective?

  • Review
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Mesenchymal stem cells (MSCs) are mesodermal-origin postnatal stem cells that are able to self-renew and differentiate into several cell lineages. MSCs possess anti-inflammatory and anti-apoptotic activity, immunomodulatory action, as well as regenerative properties. Since MSCs also have antimicrobial properties, it has been suggested that they should be utilized for treating infectious diseases. In this study, the last pre-clinical advances in the efficacy of MSCs’ therapy against parasitic diseases were reviewed.

Methods

Data about the effects of MSCs’ therapy on experimental and pre-clinical parasitic infections were collected by searching relevant articles and reviewing them.

Results

In the present study, empirical findings on the impacts of MSCs’ therapy against parasitic diseases were recapitulated. Studies have reported that the administration of MSCs reduces the burden of the parasite and modulates the levels of inflammatory and anti-inflammatory cytokines in parasitic diseases, including schistosomiasis, malaria, cystic echinococcosis, toxocariasis, leishmaniasis, and trypanosomiasis. Also, the administration of MSCs combined with anti-parasitic drugs enhanced anti-parasitic effects and immunomodulatory actions.

Conclusion

Based on this review, empirical studies have revealed the beneficial effects of MSCs against some parasitic infections. This new therapeutic strategy showed both anti-parasitic and immunomodulatory effects. Also, the combination of anti-parasitic drugs with MSCs’ therapy promoted anti-parasitic and immunomodulatory activities against parasitic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nasri F, Mohtasebi MS, Hashemi E, Zarrabi M, Gholijani N, Sarvestani EK (2018) Therapeutic efficacy of mesenchymal stem cells and mesenchymal stem cells-derived neural progenitors in experimental autoimmune encephalomyelitis. Int J Stem Cells 11:68–77. https://doi.org/10.15283/ijsc17052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mohtasebi MS, Nasri F, Kamali Sarvestani E (2014) Effect of DiD carbocyanine dye labeling on immunoregulatory function and differentiation of mice mesenchymal stem cells. Stem Cells Int 2014:457614. https://doi.org/10.1155/2014/457614

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jiang W, Xu J (2020) Immune modulation by mesenchymal stem cells. Cell Prolif 53(1):e12712. https://doi.org/10.1111/cpr.12712

    Article  PubMed  Google Scholar 

  4. Haque N, Ramasamy TS, Kasim NHA (2019) Mechanisms of mesenchymal stem cells for autoimmune disease treatment. Stem cell transplantation for autoimmune diseases and inflammation. Stem Cells in Clin Appl. https://doi.org/10.1007/978-3-030-23421-8_2

    Article  Google Scholar 

  5. Timaner M, Tsai KK, Shaked Y (2020) The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 60:225–237. https://doi.org/10.1016/j.semcancer.2019.06.003

    Article  CAS  PubMed  Google Scholar 

  6. Dang LT-T, Phan NK, Truong KD (2017) Mesenchymal stem cells for diabetes mellitus treatment: new advances. Biomed Res Ther 4(1):1062–1081. https://doi.org/10.1530/JME-17-0117

    Article  Google Scholar 

  7. Kalkal M, Tiwari M, Thakur RS, Awasthi V, Pande V, Chattopadhyay D et al (2021) Mesenchymal stem cells: a novel therapeutic approach to enhance protective immunomodulation and erythropoietic recovery in Malaria. Stem Cell Rev Rep 17(6):1993–2002. https://doi.org/10.1007/s12015-021-10191-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raafat MH, Abdel Gawad S, Fikry H (2017) Histological study on the possible therapeutic role of bone marrow derived mesenchymal stem cells in a model of Schistosoma mansoni infestation of spleen of mice. Egypt J Histol 40(3):388–404. https://doi.org/10.21608/EJH.2017.4663

    Article  Google Scholar 

  9. Zanganeh E, Soudi S, Zavaran Hosseini A (2020) Intralesional Injection of Mouse Mesenchymal Stem Cells Reduces IL-10 Production and Parasite Burden in L. major Infected BALB/c Mice. Cell J 22:11–18. https://doi.org/10.22074/cellj.2020.6838

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sady H, Al-Mekhlafi HM, Atroosh WM, Al-Delaimy AK, Nasr NA, Dawaki S et al (2015) Knowledge, attitude, and practices towards schistosomiasis among rural population in Yemen. Parasit Vectors 8(1):436. https://doi.org/10.1186/s13071-015-1050-8

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roure S, Valerio L, Perez-Quilez O, Fernandez-Rivas G, Martinez-Cuevas O, Alcantara-Roman A et al (2017) Epidemiological, clinical, diagnostic and economic features of an immigrant population of chronic schistosomiasis sufferers with long-term residence in a non-endemic country (North Metropolitan area of Barcelona, 2002–2016). PLoS ONE 12(9):e0185245. https://doi.org/10.1371/journal.pone.0185245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Deol AK, Fleming FM, Calvo-Urbano B, Walker M, Bucumi V, Gnandou I et al (2019) Schistosomiasis-assessing progress toward the 2020 and 2025 global goals. N Engl J Med 381(26):2519–2528. https://doi.org/10.1056/NEJMoa1812165

    Article  PubMed  PubMed Central  Google Scholar 

  13. Miranda VHS, Gomes TR, Eller DE, Ferraz LCN, Chaves AT, Bicalho KA et al (2020) Liver damage in schistosomiasis is reduced by adipose tissue-derived stem cell therapy after praziquantel treatment. PLoS Negl Trop Dis 14(8):e0008635. https://doi.org/10.1371/journal.pntd.0008635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hegab MH, Abd-Allah SH, Badawey MS, Saleh AA, Metwally AS, Fathy GM et al (2018) Therapeutic potential effect of bone marrow-derived mesenchymal stem cells on chronic liver disease in murine Schistosomiasis Mansoni. J Parasit Dis 42(2):277–286. https://doi.org/10.1007/s12639-018-0997-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lago EM, Xavier RP, Teixeira TR, Silva LM, da Silva Filho AA, de Moraes J (2018) Antischistosomal agents: state of art and perspectives. Future Med Chem 10(1):89–120. https://doi.org/10.4155/fmc-2017-0112

    Article  CAS  PubMed  Google Scholar 

  16. Liu LX, Li-Li J, Qiong C, Xiao-Lin F (2017) Recent advances in the synthesis of antischistosomal drugs and agents. Mini Rev Med Chem 17(5):467–484. https://doi.org/10.2174/1389557513666131119204558

    Article  CAS  PubMed  Google Scholar 

  17. Xu H, Qian H, Zhu W, Zhang X, Yan Y, Mao F et al (2012) Mesenchymal stem cells relieve fibrosis of Schistosoma japonicum-induced mouse liver injury. Exp Biol Med (Maywood) 237(5):585–592. https://doi.org/10.1258/ebm.2012.011362

    Article  CAS  PubMed  Google Scholar 

  18. Alsulami M, Abdel-Gaber R (2021) Cell therapy as a new approach on hepatic fibrosis of murine model of Schistosoma mansoni-infection. Acta Parasitol 66(1):136–145. https://doi.org/10.1007/s11686-020-00267-2

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Mi JY, Rui YJ, Xu YL, Wang W (2014) Stem cell therapy for the treatment of parasitic infections: is it far away? Parasitol Res 113(2):607–612. https://doi.org/10.1007/s00436-013-3689-4

    Article  PubMed  Google Scholar 

  20. Dong L, Pu Y, Chen X, Qi X, Zhang L, Xu L et al (2020) hUCMSC-extracellular vesicles downregulated hepatic stellate cell activation and reduced liver injury in S. Japonicum-infected mice. Stem Cell Research Therapy 11:1–11. https://doi.org/10.1186/s13287-019-1539-8

    Article  CAS  Google Scholar 

  21. Liu C, Zhang YS, Chen F, Wu XY, Zhang BB, Wu ZD et al (2020) Immunopathology in schistosomiasis is regulated by TLR2,4- and IFN-gamma-activated MSC through modulating Th1/Th2 responses. Stem Cell Res Ther 11(1):217. https://doi.org/10.1186/s13287-020-01735-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammam OA, Elkhafif N, Attia YM, Mansour MT, Elmazar MM, Abdelsalam RM et al (2016) Wharton’s jelly-derived mesenchymal stem cells combined with praziquantel as a potential therapy for Schistosoma mansoni-induced liver fibrosis. Sci Rep 6(1):21005. https://doi.org/10.1038/srep21005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abdel Aziz M, Atta H, Roshdy N, Rashed L, Sabry D, Hassouna A et al (2012) Amelioration of murine schistosoma mansoni induced liver fibrosis by mesenchymal stem cells. J Stem Cells Regen Med 8(1):28–34. https://doi.org/10.46582/jsrm.0801005

    Article  PubMed  PubMed Central  Google Scholar 

  24. Su XZ, Lane KD, Xia L, Sa JM, Wellems TE (2019) Plasmodium genomics and genetics: new insights into malaria pathogenesis, drug resistance, epidemiology, and evolution. Clin Microbiol Rev 32(4):e00019-19. https://doi.org/10.1128/CMR.00019-19

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sadoine ML, Smargiassi A, Ridde V, Tusting LS, Zinszer K (2018) The associations between malaria, interventions, and the environment: a systematic review and meta-analysis. Malar J 17(1):73. https://doi.org/10.1186/s12936-018-2220-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang W, Qian H, Cao J (2015) Stem cell therapy: a novel treatment option for cerebral malaria? Stem Cell Res Ther 6(1):141. https://doi.org/10.1186/s13287-015-0138-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Walther M, Tongren JE, Andrews L, Korbel D, King E, Fletcher H et al (2005) Upregulation of TGF-beta, FOXP3, and CD4+CD25+ regulatory T cells correlates with more rapid parasite growth in human malaria infection. Immunity 23(3):287–296. https://doi.org/10.1016/j.immuni.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  28. Souza MC, Silva JD, Padua TA, Torres ND, Antunes MA, Xisto DG et al (2015) Mesenchymal stromal cell therapy attenuated lung and kidney injury but not brain damage in experimental cerebral malaria. Stem Cell Res Ther 6(1):102. https://doi.org/10.1186/s13287-015-0093-2

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thakur RS, Tousif S, Awasthi V, Sanyal A, Atul PK, Punia P et al (2013) Mesenchymal stem cells play an important role in host protective immune responses against malaria by modulating regulatory T cells. Eur J Immunol 43(8):2070–2077. https://doi.org/10.1002/eji.201242882

    Article  CAS  PubMed  Google Scholar 

  30. Thakur RS, Awasthi V, Sanyal A, Chatterjee S, Rani S, Chauhan R et al (2020) Mesenchymal stem cells protect against malaria pathogenesis by reprogramming erythropoiesis in the bone marrow. Cell Death Discov 6(1):125. https://doi.org/10.1038/s41420-020-00363-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hemphill A, Muller J (2009) Alveolar and cystic echinococcosis: towards novel chemotherapeutical treatment options. J Helminthol 83(2):99–111. https://doi.org/10.1017/S0022149X0928936X

    Article  CAS  PubMed  Google Scholar 

  32. Barth TFE, Casulli A (2021) Morphological characteristics of alveolar and cystic echinococcosis lesions in human liver and bone. Pathogens 10(10):1326. https://doi.org/10.3390/pathogens10101326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W et al (2019) Echinococcosis: advances in the 21st Century. Clin Microbiol Rev 32(2):e00075-e118. https://doi.org/10.1128/CMR.00075-18

    Article  PubMed  PubMed Central  Google Scholar 

  34. Diaz A (2017) Immunology of cystic echinococcosis (hydatid disease). Br Med Bull 124(1):121–133. https://doi.org/10.1093/bmb/ldx033

    Article  CAS  PubMed  Google Scholar 

  35. Abo-Aziza FAM, Zaki AKA, Abo El-Maaty AM (2019) Bone marrow-derived mesenchymal stem cell (BM-MSC): A tool of cell therapy in hydatid experimentally infected rats. Cell Regen 8(2):58–71. https://doi.org/10.1016/j.cr.2019.11.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yang N, Ma W, Ke Y, Liu H, Chu J, Sun L et al (2022) Transplantation of adipose-derived stem cells ameliorates Echinococcus multilocularis-induced liver fibrosis in mice. PLoS Negl Trop Dis 16(1):e0010175. https://doi.org/10.1371/journal.pntd.0010175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moreira GM, Telmo Pde L, Mendonca M, Moreira AN, McBride AJ, Scaini CJ et al (2014) Human toxocariasis: current advances in diagnostics, treatment, and interventions. Trends Parasitol 30(9):456–464. https://doi.org/10.1016/j.pt.2014.07.003

    Article  PubMed  Google Scholar 

  38. Beshay EVN, El-Refai SA, Sadek GS, Elbadry AA, Shalan FH, Afifi AF (2020) Mesenchymal stem cells combined with albendazole as a novel therapeutic approach for experimental neurotoxocariasis. Parasitology 147(7):799–809. https://doi.org/10.1017/S003118202000044X

    Article  CAS  PubMed  Google Scholar 

  39. Abo-Aziza FAM, Zaki AKA, Alajaji AI, Al Barrak SM (2021) Bone marrow mesenchymal stem cell co-adjuvant therapy with albendazole for managing Toxocara vitulorum-rat model. Vet World 14:347–363. https://doi.org/10.14202/vetworld.2021.347-363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mann S, Frasca K, Scherrer S, Henao-Martinez AF, Newman S, Ramanan P et al (2021) A review of Leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep 8(2):121–132. https://doi.org/10.1007/s40475-021-00232-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a review. F1000Res 6:750. https://doi.org/10.12688/f1000research.11120.1

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sundar S, Chakravarty J, Meena LP (2018) Leishmaniasis: treatment, drug resistance and emerging therapies. Expert Opin Orphan Drugs 7(1):1–10. https://doi.org/10.1080/21678707.2019.1552853

    Article  CAS  Google Scholar 

  43. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis Lancet 392(10151):951–970. https://doi.org/10.1016/S0140-6736(18)31204-2

    Article  PubMed  Google Scholar 

  44. de Menezes JP, Guedes CE, Petersen AL, Fraga DB, Veras PS (2015) Advances in development of new treatment for Leishmaniasis. Biomed Res Int. https://doi.org/10.1155/2015/815023

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dameshghi S, Zavaran-Hosseini A, Soudi S, Shirazi FJ, Nojehdehi S, Hashemi SM (2016) Mesenchymal stem cells alter macrophage immune responses to Leishmania major infection in both susceptible and resistance mice. Immunol Lett 170:15–26. https://doi.org/10.1016/j.imlet.2015.12.002

    Article  CAS  PubMed  Google Scholar 

  46. Khosrowpour Z, Hashemi SM, Mohammadi-Yeganeh S, Soudi S (2017) Pretreatment of mesenchymal stem cells with Leishmania major soluble antigens induce anti-inflammatory properties in mouse peritoneal macrophages. J Cell Biochem 118(9):2764–2779. https://doi.org/10.1002/jcb.25926

    Article  CAS  PubMed  Google Scholar 

  47. Rossi M, Fasel N (2018) How to master the host immune system? Leishmania parasites have the solutions! Int Immunol 30(3):103–111. https://doi.org/10.1093/intimm/dxx075

    Article  CAS  PubMed  Google Scholar 

  48. Ikeogu NM, Akaluka GN, Edechi CA, Salako ES, Onyilagha C, Barazandeh AF et al (2020) Leishmania Immunity: advancing immunotherapy and vaccine development. Microorganisms 8(8):1201. https://doi.org/10.3390/microorganisms8081201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dayakar A, Chandrasekaran S, Kuchipudi SV, Kalangi SK (2019) Cytokines: key determinants of resistance or disease progression in visceral leishmaniasis: opportunities for novel diagnostics and immunotherapy. Front Immunol. https://doi.org/10.3389/fimmu.2019.00670

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hamoon Navard S, Rezvan H, Feiz Haddad MH, Baghaban Eslaminejad M, Azami S (2020) Expression of cytokine genes in Leishmania major-infected BALB/c mice treated with mesenchymal stem cells. J Med Microbiol Infect Dis 8:7–13. https://doi.org/10.29252/JoMMID.8.1.7

    Article  Google Scholar 

  51. Navard SH, Rezvan H, Haddad MHF, Ali SA, Nourian A, Eslaminejad MB et al (2020) Therapeutic effects of mesenchymal stem cells on cutaneous Leishmaniasis lesions caused by Leishmania major. J Glob Antimicrob Resist 23:243–250. https://doi.org/10.1016/j.jgar.2020.09.005

    Article  PubMed  Google Scholar 

  52. Zanganeh E, Soudi S, Zavaran Hosseini A, Khosrojerdi A (2019) Repeated intravenous injection of adipose tissue derived mesenchymal stem cells enhances Th1 immune responses in Leishmania major-infected BALB/c mice. Immunol Lett 216:97–105. https://doi.org/10.1016/j.imlet.2019.10.008

    Article  CAS  PubMed  Google Scholar 

  53. Pereira JC, Ramos TD, Silva JD, de Mello MF, Pratti JES, da Fonseca-Martins AM et al (2017) Effects of bone marrow mesenchymal stromal cell therapy in experimental cutaneous Leishmaniasis in balb/c mice induced by Leishmania amazonensis. Front Immunol. https://doi.org/10.3389/fimmu.2017.00893

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ramos TD, Silva JD, da Fonseca-Martins AM, da Silveira Pratti JE, Firmino-Cruz L, Maciel-Oliveira D et al (2020) Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous Leishmaniasis caused by Leishmania amazonensis. Stem Cell Res Ther 11(1):374. https://doi.org/10.1186/s13287-020-01889-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bahrami S, Safari M, Razi Jalali MH, Ghorbanpoor M, Tabandeh MR, Rezaie A (2021) The potential therapeutic effect of adipose-derived mesenchymal stem cells in the treatment of cutaneous Leishmaniasis caused by L. major in BALB/c mice. Exp Parasitol. https://doi.org/10.1016/j.exppara.2020.108063

    Article  PubMed  Google Scholar 

  56. Bogitsh BJ, Carter CE, Oeltmann TN (2019) Blood and Tissue Protistans I. In: Bogitsh BJ, Carter CE, Oeltmann TN (eds) Human Parasitology. Academic Press, Cambridge, pp 83–110. https://doi.org/10.1016/b978-0-12-813712-3.00006-0

    Chapter  Google Scholar 

  57. Lidani KCF, Andrade FA, Bavia L, Damasceno FS, Beltrame MH, Messias-Reason IJ et al (2019) Chagas disease: from discovery to a worldwide health problem. Front Public Health. https://doi.org/10.3389/fpubh.2019.00166

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pérez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94. https://doi.org/10.1016/s0140-6736(17)31612-4

    Article  PubMed  Google Scholar 

  59. Chuit R, Meiss R, Salvatella R (2019) Epidemiology of Chagas Disease. Birkhäuser Advances in Infectious Diseases. Springer, Berlin, pp 91–109. https://doi.org/10.1007/978-3-030-00054-7_4

    Chapter  Google Scholar 

  60. Moscatelli G, Moroni S (2019) Acute Vector-Borne Chagas Disease. Birkhäuser Advances in Infectious Diseases. Springer, Berlin. https://doi.org/10.1007/978-3-030-00054-7_8

    Book  Google Scholar 

  61. Ribeiro AL, Nunes MP, Teixeira MM, Rocha MO (2012) Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol 9(10):576–589. https://doi.org/10.1038/nrcardio.2012.109

    Article  CAS  PubMed  Google Scholar 

  62. Tanowitz HB, Machado FS, Spray DC, Friedman JM, Weiss OS, Lora JN et al (2015) Developments in the management of Chagas cardiomyopathy. Expert Rev Cardiovasc Ther 13(12):1393–1409. https://doi.org/10.1586/14779072.2015.1103648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Carvalho KA, Abdelwahid E, Ferreira RJ, Irioda AC, Guarita-Souza LC (2013) Preclinical stem cell therapy in Chagas Disease: Perspectives for future research. World J Transplant 3(4):119–126. https://doi.org/10.5500/wjt.v3.i4.119

    Article  PubMed  PubMed Central  Google Scholar 

  64. Vilas-Boas F, Feitosa GS, Soares MB, Pinho-Filho JA, Mota A, Almeida AJ et al (2004) Bone marrow cell transplantation to the myocardium of a patient with heart failure due to Chagas’ disease. Arq Bras Cardiol 82(2):185–187. https://doi.org/10.1590/s0066-782x2004000200010

    Article  PubMed  Google Scholar 

  65. Soares MB, Lima RS, Rocha LL, Takyia CM, Pontes-de-Carvalho L, de Carvalho AC et al (2004) Transplanted bone marrow cells repair heart tissue and reduce myocarditis in chronic chagasic mice. Am J Pathol 164(2):441–447. https://doi.org/10.1016/s0002-9440(10)63134-3

  66. Guarita-Souza LC, Carvalho KA, Woitowicz V, Rebelatto C, Senegaglia A, Hansen P et al (2006) Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of Chagas disease. Circulation 114(1 Suppl):I120–I124. https://doi.org/10.1161/CIRCULATIONAHA.105.000646

    Article  CAS  PubMed  Google Scholar 

  67. Larocca TF, Souza BS, Silva CA, Kaneto CM, Alcantara AC, Azevedo CM et al (2013) Transplantation of adipose tissue mesenchymal stem cells in experimental chronic chagasic cardiopathy. Arq Bras Cardiol 100(5):460–468. https://doi.org/10.5935/abc.20130058

    Article  PubMed  Google Scholar 

  68. Mello DB, Ramos IP, Mesquita FC, Brasil GV, Rocha NN, Takiya CM et al (2015) Adipose tissue-derived mesenchymal stromal cells protect mice infected with trypanosoma cruzi from cardiac damage through modulation of anti-parasite immunity. PLoS Negl Trop Dis 9(8):e0003945. https://doi.org/10.1371/journal.pntd.0003945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jasmin, Jelicks- LA, Koba W, Tanowitz HB, Mendez-Otero R, Campos de Carvalho AC et al (2012) Mesenchymal bone marrow cell therapy in a mouse model of chagas disease. Where do the cells go? PLoS Negl Trop Dis 6:1971. https://doi.org/10.1371/journal.pntd.0001971

    Article  Google Scholar 

  70. Silva DN, de Freitas Souza BS, Azevedo CM, Vasconcelos JF, Carvalho RH, Soares MB et al (2014) Intramyocardial transplantation of cardiac mesenchymal stem cells reduces myocarditis in a model of chronic Chagas disease cardiomyopathy. Stem Cell Res Ther 5(4):81. https://doi.org/10.1186/scrt470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I et al (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS ONE 5(2):e9252. https://doi.org/10.1371/journal.pone.0009252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. LA Jasmin J, Tanowitz HB, Peters VM, Mendez-Otero R, de Carvalho ACC et al (2014) Molecular imaging, biodistribution and efficacy of mesenchymal bone marrow cell therapy in a mouse model of Chagas disease. Microbes Infect 16(11):923–935. https://doi.org/10.1016/j.micinf.2014.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Silva DN, Souza BSF, Vasconcelos JF, Azevedo CM, Valim CXR, Paredes BD et al (2018) Granulocyte-colony stimulating factor-overexpressing mesenchymal stem cells exhibit enhanced immunomodulatory actions through the recruitment of suppressor cells in experimental chagas disease cardiomyopathy. Front Immunol. https://doi.org/10.3389/fimmu.2018.01449

    Article  PubMed  PubMed Central  Google Scholar 

  74. Silva DN, Souza BSF, Azevedo CM, Vasconcelos JF, de Jesus PG, Feitoza MS et al (2018) IGF-1-Overexpressing mesenchymal stem/stromal cells promote immunomodulatory and proregenerative effects in chronic experimental chagas disease. Stem Cells Int 2018:1–11. https://doi.org/10.1155/2018/9108681

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marzieh Ashrafmansouri or Fatemeh Nasri.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable to this article.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kian, M., Mirzavand, S., Sharifzadeh, S. et al. Efficacy of Mesenchymal Stem Cells Therapy in Parasitic Infections: Are Anti-parasitic Drugs Combined with MSCs More Effective?. Acta Parasit. 67, 1487–1499 (2022). https://doi.org/10.1007/s11686-022-00620-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00620-7

Keywords