[go: up one dir, main page]

Skip to main content
Log in

Footholds optimization for legged robots walking on complex terrain

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper proposes a novel continuous footholds optimization method for legged robots to expand their walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an optimization function combined with the robot’s state information to select the next footholds and generate the motion trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking experiment on a complex terrain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BCS:

Body coordinate system

CBC:

Centroid balance control

CI:

Convolution interpolation

CNN:

Convolutional neural network

CoM:

Center of mass

GRF:

Ground reaction force

IMU:

Inertial measurement unit

LCS:

Leg coordinate system

NDCI:

Normalized derivable convolution interpolation

PCI:

Pyramid convolution interpolation

RGBD:

Red, green, blue, depth

SLIP:

Spring-loaded inverted pendulum

WCS:

World coordinate system

A :

Merged matrix for CBC

b, f :

Merged vectors for CBC

c i,j :

Center of the pixel (i, j) on the map

C :

Matrix of friction cone and upper and lower bound constraints for GRF

E :

Identity matrix

f i :

GRF of the ith leg

L f * i :

Virtual feedforward force of the ith leg in the LCS

f lim :

Friction cone and upper and lower bound constraints for GRF

f *st :

Virtual force of the supporting legs

f *st,i :

Virtual force of the ith supporting leg

L f *st,i , L f *sw,i :

Virtual feedforward forces of the ith supporting leg and swing leg in the LCS, respectivley

g :

Local gravitational acceleration

h z :

Step height that needs to be raised in the middle of the swing process

h :

Merged vector of hi

h * :

Horizontal component of optimized footholds

h i :

Horizontal component of pi

h * i :

Optimized horizontal coordinate of the foothold

h pre :

Merged vector of hpre,i

h pre,i :

Horizontal component of preplanned foothold

Δh :

Intermediate variable of the difference between the optimized footholds and the preplanned footholds

Δh lim :

Maximum amount of adjustment Δpi allowed

nΔh :

nth element of Δh

i :

Index for the item, such as the ith leg, or the (i, j) pixel

B I :

Inertia matrix of the body in the BCS

j :

Index for the item, such as the (i, j) pixel

J i :

Jacobian matrix of the ith leg

J (h i):

Terrain cost at the position of hi

J (p h):

Cost function for NDCI

J(p h):

Partial derivative of the cost function for NDCI

K D,j, K P,j :

Joint damping and stiffness matrices, respectively

K D,p, K P,p :

Damping and stiffness of body position, respectively

K Da, K Pa :

Damping and stiffness of body attitude, respectively

L K Dj, L K P :

Damping and stiffness of the leg, respectively

B l i :

Tip position in the BCS

\(^{\rm{L}}{{\boldsymbol{l}}_i}{,^{\rm{L}}}{{{\boldsymbol{\dot l}}}_i}\) :

Position and velocity of the ith leg in the LCS, respectively

\(^{\rm{L}}{\boldsymbol{l}}_i^ \ast {,^{\rm{L}}}{\boldsymbol{\dot l}}_i^ \ast \) :

Target position and velocity of the ith leg in the LCS, respectively

m, n :

Set numbers of pixels that need to be involved

p b :

Position of the robot body

\({\boldsymbol{p}}_{\rm{b}}^ \ast,\,\,{\boldsymbol{\dot p}}_{\rm{b}}^ \ast,\,\,{\boldsymbol{\ddot p}}_{\rm{b}}^ \ast \) :

Target position, velocity, and acceleration of the robot’s CoM, respectively

p h :

Horizontal coordinate of the position of the selected point on the whole map

p i :

Foothold point of the th leg

p i,x, p i,y, p i,z :

x, y, and z components of the foothold pi, respectively

p * i :

Optimized footholds

p *iz :

Height components at the position p *i on the heightmap

p pre,i :

Preplanning of the target foothold

p ξi :

Swing trajectory of the th leg

\({{{\boldsymbol{\hat p}}}_{\rm{b}}},\,\,{{{\boldsymbol{\hat \dot p}}}_{\rm{b}}}\) :

Estimated position and velocity of the robot, respectively

Δp *b :

Correction amount on the original body trajectory

Δp i :

Foothold adjustment for the ith leg

B p hip,i :

Position of the ith leg’s hip joint in the BCS

\({{\boldsymbol{q}}_i},\,{{{\boldsymbol{\dot q}}}_i}\) :

Current angle and angular velocity read by the ith encoder, respectively

\({\boldsymbol{q}}_i^ \ast,\,{\boldsymbol{\dot q}}_i^ \ast \) :

Target angle and angular velocity of the ith joint, respectively

R :

Current attitude matrix

R*:

Desired attitude of the body

\({{\boldsymbol{\hat R}}}\) :

Estimated current attitude of the robot

ℝ:

Set of real number

S :

Selection matrix for CBC

t sw,i :

Time when the ith leg enters the swing phase

T st, T sw :

Duration of the standing and swing phase, respectively

v :

Velocity of the body

v d :

Desired velocity of the body

Δv *b :

Speed correction

x h :

x component of the horizontal coordinate of the position of the selected point on the heightmap

x i,j :

x component of the center of the pixel (i, j) on the map

y h :

y component of the horizontal coordinate of the position of the selected point on the heightmap

y i,j :

y component of the center of the pixel (i, j) on the map

W, D, Q :

Weighting matrices for footholds optimization

α, β, γ :

Weighting factors for footholds optimization

δ :

Weighting factor for CBC

σ x, σ y :

Smoothing factor in x and y directions, respectively

ϕ θ, ψ :

Euler angle roll, pitch, and yaw measured by the IMU

μ :

Number of legs in contact

τ *i :

Control torque of the ith joint

ξ i :

Swing phase

\({{{\boldsymbol{\hat \omega}}}_{\rm{b}}}\) :

Angular velocity of the body

\({\boldsymbol{\omega}}_{\rm{b}}^ \ast,\,\,{\boldsymbol{\dot \omega}}_{\rm{b}}^ \ast \) :

Target angular velocity and acceleration of the robot, respectively

*:

Symbol maps from a vector (ℝ3) to an antisymmetric matrix (ℝ3×3)

References

  1. Raibert M H, Tello E R. Legged robots that balance. IEEE Expert, 1986, 1(4): 89

    Article  Google Scholar 

  2. Bledt G, Powell M J, Katz B, Di Carlo J, Wensing P M, Kim S. MIT Cheetah 3: design and control of a robust, dynamic quadruped robot. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018

    Google Scholar 

  3. Vernaza P, Likhachev M, Bhattacharya S, Chitta S, Kushleyev A, Lee D D. Search-based planning for a legged robot over rough terrain. In: Proceedings of 2009 IEEE International Conference on Robotics & Automation. Kobe: IEEE, 2009, 2380–2387

    Chapter  Google Scholar 

  4. Kalakrishnan M, Buchli J, Pastor P, Mistry M, Schaal S. Fast, robust quadruped locomotion over challenging terrain. In: Proceedings of 2010 IEEE International Conference on Robotics & Automation. Anchorage: IEEE, 2010, 2665–2670

    Chapter  Google Scholar 

  5. Semini C, Tsagarakis N G, Guglielmino E, Focchi M, Cannella F, Caldwell D G. Design of HyQ—a hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(6): 831–849

    Google Scholar 

  6. Winkler A, Havoutis I, Bazeille S, Ortiz J, Focchi M, Dillmann R, Caldwell D, Semini C. Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots. In: Proceedings of 2014 IEEE International Conference on Robotics & Automation (ICRA). Hong Kong: IEEE, 2014, 6476–6482

    Chapter  Google Scholar 

  7. Hutter M, Gehring C, Jud D, Lauber A, Bellicoso C D, Tsounis V, Hwangbo J, Bodie K, Fankhauser P, Bloesch M, Diethelm R, Bachmann S, Melzer A, Hoepflinger M. ANYmal—a highly mobile and dynamic quadrupedal robot. In: Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Daejeon: IEEE, 2016, 38–44

    Google Scholar 

  8. Winkler A W, Bellicoso C D, Hutter M, Buchli J. Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robotics and Automation Letters, 2018, 3(3): 1560–1567

    Article  Google Scholar 

  9. Mastalli C, Focchi M, Havoutis I, Radulescu A, Calinon S, Buchli J, Caldwell D G, Semini C. Trajectory and foothold optimization using low-dimensional models for rough terrain locomotion. In: Proceedings of 2017 IEEE International Conference on Robotics & Automation (ICRA). Singapore: IEEE, 2017, 1096–1103

    Chapter  Google Scholar 

  10. Mastalli C, Havoutis I, Focchi M, Caldwell D G, Semini C. Motion planning for quadrupedal locomotion: coupled planning, terrain mapping and whole-body control. IEEE Transactions on Robotics, 2020, 36(6): 1635–1648

    Article  Google Scholar 

  11. Mastalli C, Havoutis I, Winkler A W, Caldwell D G, Semini C. On-line and on-board planning and perception for quadrupedal locomotion. In: Proceedings of 2015 IEEE International Conference on Technologies for Practical Robot Applications (TePRA). Woburn: IEEE, 2019, 1–7

    Google Scholar 

  12. Fankhauser P, Bjelonic M, Bellicoso C D, Miki T, Hutter M. Robust rough-terrain locomotion with a quadrupedal robot. In: Proceedings of 2018 IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018, 5761–5768

    Chapter  Google Scholar 

  13. Jenelten F, Miki T, Vijayan A E, Bjelonic M, Hutter M. Perceptive locomotion in rough terrain—online foothold optimization. IEEE Robotics and Automation Letters, 2020, 5(4): 5370–5376

    Article  Google Scholar 

  14. Chai X, Gao F, Xu Y L. Perception-based gait planning for a hexapod robot walking on typical structured terrain. In: Zhang X M, Wang N F, Huang Y J, eds. Mechanism and Machine Science. Singapore: Springer, 2017, 169–181

    Chapter  Google Scholar 

  15. Kim D, Carballo D, Di Carlo J, Katz B, Bledt G, Lim B, Kim S. Vision aided dynamic exploration of unstructured terrain with a small-scale quadruped robot. In: Proceedings of 2020 IEEE International Conference on Robotics and Automation (ICRA). Paris: IEEE, 2020, 2464–2470

    Chapter  Google Scholar 

  16. Mao L H, Tian Y, Gao F, Zhao Y. Novel method of gait switching in six-legged robot walking on continuous-nondifferentiable terrain by utilizing stability and interference criteria. Science China Technological Sciences, 2020, 63(12): 2527–2540

    Article  Google Scholar 

  17. Mao L H, Gao F, Tian Y, Zhao Y. Novel method for preventing shin-collisions in six-legged robots by utilising a robot–terrain interference model. Mechanism and Machine Theory, 2020, 151: 103897

    Article  Google Scholar 

  18. Zhao Y, Gao F, Yin Y P. Obstacle avoidance and terrain identification for a hexapod robot. Research Square, 2020, preprint

  19. Magaña O A V, Barasuol V, Camurri M, Franceschi L, Focchi M, Pontil M, Caldwell D G, Semini C. Fast and continuous foothold adaptation for dynamic locomotion through CNNs. IEEE Robotics and Automation Letters, 2019, 4(2): 2140–2147

    Article  Google Scholar 

  20. Miki T, Lee J, Hwangbo J, Wellhausen L, Koltun V, Hutter M. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics, 2022, 7(62): eabk2822

    Article  Google Scholar 

  21. Tsounis V, Alge M, Lee J, Farshidian F, Hutter M. DeepGait: planning and control of quadrupedal gaits using deep reinforcement learning. IEEE Robotics and Automation Letters, 2020, 5(2): 3699–3706

    Article  Google Scholar 

  22. Gehring C, Fankhauser P, Isler L, Diethelm R, Bachmann S, Potz M, Gerstenberg L, Hutter M. ANYmal in the field: solving industrial inspection of an offshore HVDC platform with a quadrupedal robot. In: Ishigami G, Yoshida K, eds. Field and Service Robotics. Singapore: Springer, 2021, 247–260

    Chapter  Google Scholar 

  23. Liu W, Gao Y, Gao F, Li S Y. Trajectory adaptation and safety control via control barrier functions for legged robots. In: Proceedings of 2021 China Automation Congress (CAC). Beijing: IEEE, 2021, 5571–5576

    Chapter  Google Scholar 

  24. Park H W, Wensing P M, Kim S. Jumping over obstacles with MIT Cheetah 2. Robotics and Autonomous Systems, 2021, 136: 103703

    Article  Google Scholar 

  25. Qi S H, Lin W C, Hong Z J, Chen H, Zhang W. Perceptive autonomous stair climbing for quadrupedal robots. In: Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague: IEEE, 2021, 2313–2320

    Google Scholar 

  26. Gerum P. Xenomai—Implementing a RTOS emulation framework on GNU/Linux. White Paper, 2004, 81

  27. Hintjens P. ZeroMQ: Messaging for Many Applications. O’Reilly Media, 2013

  28. Sun Q, Gao F, Chen X B. Towards dynamic alternating tripod trotting of a pony-sized hexapod robot for disaster rescuing based on multi-modal impedance control. Robotica, 2018, 36(7): 1048–1076

    Article  Google Scholar 

  29. Ekstrom M P. Digital Image Processing Techniques. 2nd ed. Academic Press, 2012

  30. Ranganathan, A. The Levenberg-Marquardt algorithm. Tutoral on LM Algorithm, 2004, 11(1): 101–110

    Google Scholar 

  31. Blösch M, Hutter M, Höpflinger M A, Leutenegger S, Gehring C, Remy C D, Siegwart R Y. State estimation for legged robots—consistent fusion of leg kinematics and IMU. In: Proceedings of Robotics: Science and Systems Conference (RSS 2012). Sidney: Robotics: Science and Systems Conference, 2012

  32. Focchi M, Del Prete A, Havoutis I, Featherstone R, Caldwell D G, Semini C. High-slope terrain locomotion for torque-controlled quadruped robots. Autonomous Robots, 2017, 41(1): 259–272

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant No. 2021YFF0306202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Zhao, Y., Xiao, Y. et al. Footholds optimization for legged robots walking on complex terrain. Front. Mech. Eng. 18, 26 (2023). https://doi.org/10.1007/s11465-022-0742-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0742-y

Keywords