[go: up one dir, main page]

Skip to main content

Advertisement

Log in

The Cell-Free mMIMO Network Based on IRSs: Mathematical Analysis and Performance Evaluation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The implementation of massive multiple input multiple output systems mMIMO can greatly enhance the spectral efficiency SE performance for users. Although, the cell-edge users as well as indoor users still have a bad performance. The cell-Free network, wherein the large number of existing antennas is replaced by the same number of distributed access points APs, can enlarge the SE performance even for shadowed users. The performance can be further enhanced after application of cooperation. When a Cell-Free mMIMO system is enriched with intelligent reflecting surfaces IRS, its performance may be improved. In this manuscript, the authors will carry out the mathematical model and simulation for the Cell-Free networks employing IRSs. The performance metrics can include the SE as well as energy efficiency EE. From the simulation results, it can be observed that implementation of IRSs inside the cell-Free networks can greatly increase the SE and EE of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Muirhead, D., Imran, M. A., & Arshad, K. (2016). A survey of the challenges, opportunities and use of multiple antennas in current and future 5G small cell base stations. IEEE Access, 4, 2952–2964. https://doi.org/10.1109/ACCESS.2016.2569483

    Article  Google Scholar 

  2. Yang, Y., Bai, B., & Chen, W. (2017). Spectrum reuse ratio in 5G cellular networks: A matrix graph approach. IEEE Transactions on Mobile Computing, 16(12), 3541–3553. https://doi.org/10.1109/TMC.2017.2696005

    Article  Google Scholar 

  3. Taufique, A., Jaber, M., Imran, A., Dawy, Z., & Yacoub, E. (2017). Planning wireless cellular networks of future: Outlook, challenges and opportunities. IEEE Access, 5, 4821–4845. https://doi.org/10.1109/ACCESS.2017.2680318

    Article  Google Scholar 

  4. Song, F., et al. (2019). Probabilistic caching for small-cell networks with terrestrial and aerial users. IEEE Transactions on Vehicular Technology, 68(9), 9162–9177. https://doi.org/10.1109/TVT.2019.2929839

    Article  Google Scholar 

  5. Xin, Y., Wang, D., Li, J., Zhu, H., Wang, J., & You, X. (2016). Area spectral efficiency and area energy efficiency of massive MIMO cellular systems. IEEE Transactions on Vehicular Technology, 65(5), 3243–3254. https://doi.org/10.1109/TVT.2015.2436896

    Article  Google Scholar 

  6. Shojaeifard, A., Wong, K. K., Di Renzo, M., Zheng, G., Hamdi, K. A., & Tang, J. (2017). Massive MIMO-enabled full-duplex cellular networks. IEEE Transactions on Communications, 65(11), 4734–4750. https://doi.org/10.1109/TCOMM.2017.2731768

    Article  Google Scholar 

  7. Han, Y., Rao, B. D., & Lee, J. (2020). Massive uncoordinated access with massive MIMO: A dictionary learning approach. IEEE Transactions on Wireless Communications, 19(2), 1320–1332. https://doi.org/10.1109/TWC.2019.2952843

    Article  Google Scholar 

  8. You, L., et al. (2020). Pilot reuse for vehicle-to-vehicle underlay massive MIMO transmission. IEEE Transactions on Vehicular Technology, 69(5), 5693–5697. https://doi.org/10.1109/TVT.2020.2982013

    Article  Google Scholar 

  9. Björnson, E., & Sanguinetti, L. (2020). Making cell-free massive MIMO competitive with MMSE processing and centralized implementation. IEEE Transactions on Wireless Communications, 19(1), 77–90. https://doi.org/10.1109/TWC.2019.2941478

    Article  Google Scholar 

  10. Zhang, Y., Zhou, M., Qiao, X., Cao, H., & Yang, L. (2019). On the performance of cell-free massive MIMO with low-resolution ADCs. IEEE Access, 7, 117968–117977. https://doi.org/10.1109/ACCESS.2019.2937094

    Article  Google Scholar 

  11. Zhang, Y., Cao, H., Zhou, M., & Yang, L. (2019). Cell-free massive MIMO: Zero forcing and conjugate beamforming receivers. Journal of Communications and Networks, 21(6), 529–538. https://doi.org/10.1109/JCN.2019.000053

    Article  Google Scholar 

  12. Qiu, J., Xu, K., Xia, X., Shen, Z., & Xie, W. (2020). Downlink power optimization for cell-free massive MIMO over spatially correlated Rayleigh fading channels. IEEE Access, 8, 56214–56227. https://doi.org/10.1109/ACCESS.2020.2981967

    Article  Google Scholar 

  13. Chen, S., Zhang, J., Jin, Y., & Ai, B. (2020). Wireless powered IoE for 6G. Massive access meets scalable cell-free massive MIMO. China Communications, 17(12), 92–109.

    Article  Google Scholar 

  14. Zhang, Y., Cao, H., Zhou, M., & Yang, L. (2020). Non-orthogonal multiple access in cell-free massive MIMO networks. China Communications, 17(8), 81–94.

    Article  Google Scholar 

  15. Nguyen, H. V., et al. (2020). On the spectral and energy efficiencies of full-duplex cell-free massive MIMO. IEEE Journal on Selected Areas in Communications, 38(8), 1698–1718. https://doi.org/10.1109/JSAC.2020.3000810

    Article  Google Scholar 

  16. Zhang, Y., Zhou, M., Cao, H., Yang, L., & Zhu, H. (2020). On the performance of cell-free massive MIMO with mixed-ADC under rician fading channels. IEEE Communications Letters, 24(1), 43–47. https://doi.org/10.1109/LCOMM.2019.2947462

    Article  Google Scholar 

  17. Maraqa, O., Rajasekaran, A. S., Al-Ahmadi, S., Yanikomeroglu, H., & Sait, S. M. (2020). A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Communications Surveys & Tutorials, 22(4), 2192–2235. https://doi.org/10.1109/COMST.2020.3013514

    Article  Google Scholar 

  18. Yu, L., Wu, J., Zhou, A., Larsson, E. G., & Fan, P. (2020). Massively distributed antenna systems with nonideal optical fiber fronthauls: A promising technology for 6G wireless communication systems. IEEE Vehicular Technology Magazine, 15(4), 43–51. https://doi.org/10.1109/MVT.2020.3018100

    Article  Google Scholar 

  19. Papazafeiropoulos, A., Ngo, H. Q., Kourtessis, P., Chatzinotas, S., & Senior, J. M. (2021). Towards optimal energy efficiency in cell-free massive MIMO systems. IEEE Transactions on Green Communications and Networking, 5(2), 816–831. https://doi.org/10.1109/TGCN.2021.3059206

    Article  Google Scholar 

  20. Papazafeiropoulos, A. K., Kourtessis, P., Chatzinotas, S., & Senior, J. M. (2021). Multipair two-way DF relaying with cell-free massive MIMO. IEEE Open Journal of the Communications Society, 2, 423–438. https://doi.org/10.1109/OJCOMS.2021.3060661

    Article  Google Scholar 

  21. Elhoushy, S., & Hamouda, W. (2021). Towards high data rates in dynamic environments using hybrid cell-free massive MIMO/Small-cell system. IEEE Wireless Communications Letters, 10(2), 201–205. https://doi.org/10.1109/LWC.2020.3021026

    Article  Google Scholar 

  22. Chopra, R., Murthy, C. R., & Papazafeiropoulos, A. K. (2021). Uplink performance analysis of cell-free mMIMO systems under channel aging. IEEE Communications Letters, 25(7), 2206–2210. https://doi.org/10.1109/LCOMM.2021.3073778

    Article  Google Scholar 

  23. Shalaby, M., Hussein, H. M., Shokair, M., & Benaya, A. M. (2021). The cell-free mMIMO networks: mathematical analysis and performance evaluation. Telecommunication Systems, 77, 625–641. https://doi.org/10.1007/s11235-021-00776-z

    Article  Google Scholar 

  24. Zhang, Y., Xia, W., Zhao, H., Xu, W., Wong, K. K., & Yang, L. (2022). Cell-free IoT networks with SWIPT: Performance analysis and power control. IEEE Internet of Things Journal, 9(15), 13780–13793. https://doi.org/10.1109/JIOT.2022.3143531

    Article  Google Scholar 

  25. Croisfelt, V., Abrão, T., & Marinello, J. C. (2022). User-centric perspective in random access cell-free aided by spatial separability. IEEE Internet of Things Journal, 9(17), 16562–16576. https://doi.org/10.1109/JIOT.2022.3151050

    Article  Google Scholar 

  26. Tentu, V., Sharma, E., Amudala, D. N., & Budhiraja, R. (2022). UAV-enabled hardware-impaired spatially correlated cell-free massive MIMO systems: analysis and energy efficiency optimization. IEEE Transactions on Communications, 70(4), 2722–2741. https://doi.org/10.1109/TCOMM.2022.3144470

    Article  Google Scholar 

  27. Hojatian, H., Nadal, J., Frigon, J. F., & Leduc-Primeau, F. (2022). Decentralized beamforming for cell-free massive MIMO with unsupervised learning. IEEE Communications Letters, 26(5), 1042–1046. https://doi.org/10.1109/LCOMM.2022.3157161

    Article  Google Scholar 

  28. Kawai, Y., & Sugiura, S. (2022). QoS-constrained energy-efficient beamforming and jamming with intelligent reflecting surface for secure multi-user downlink. IEEE Transactions on Green Communications and Networking, 6(1), 187–197. https://doi.org/10.1109/TGCN.2022.3144293

    Article  Google Scholar 

  29. Zhuang, Y., Li, X., Ji, H., & Zhang, H. (2022). Exploiting intelligent reflecting surface for energy efficiency in ambient backscatter communication-enabled NOMA networks. IEEE Transactions on Green Communications and Networking, 6(1), 163–174. https://doi.org/10.1109/TGCN.2022.3144465

    Article  Google Scholar 

  30. Pan, Y., Wang, K., Pan, C., Zhu, H., & Wang, J. (2022). Sum-rate maximization for intelligent reflecting surface assisted terahertz communications. IEEE Transactions on Vehicular Technology, 71(3), 3320–3325. https://doi.org/10.1109/TVT.2022.3140869

    Article  Google Scholar 

  31. Thien, H. T., Tuan, P.-V., & Koo, I. (2022). A secure-transmission maximization scheme for SWIPT systems assisted by an intelligent reflecting surface and deep learning. IEEE Access, 10, 31851–31867. https://doi.org/10.1109/ACCESS.2022.3159679

    Article  Google Scholar 

  32. Chatzigeorgiou, I. (2020, August). The impact of 5G channel models on the performance of intelligent reflecting surfaces and decode-and-forward relaying. In 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1-4). IEEE.https://doi.org/10.1109/PIMRC48278.2020.9217321

  33. Sun, Q., Qian, P., Duan, W., Zhang, J., Wang, J., & Wong, K.-K. (2021). Ergodic rate analysis and IRS configuration for multi-IRS dual-hop DF relaying systems. IEEE Communications Letters, 25(10), 3224–3228. https://doi.org/10.1109/LCOMM.2021.3100347

    Article  Google Scholar 

  34. Tao, Y., Li, Q., & Ge, X. (2021). Sum rate optimization for IRS-aided two-way af relay systems. IEEE/CIC International Conference on Communications in China (ICCC), 2021, 823–828. https://doi.org/10.1109/ICCC52777.2021.9580369

    Article  Google Scholar 

  35. Kang, Z., You, C., & Zhang, R. (2022). IRS-aided wireless relaying: deployment strategy and capacity scaling. IEEE Wireless Communications Letters, 11(2), 215–219. https://doi.org/10.1109/LWC.2021.3123075

    Article  Google Scholar 

  36. Shalaby, M., Helmy, D., Lamie, M. W., & Shokair, M. (2022). Study of electromagnetic interference effects in intelligent reflecting surfaces aided communication in alamouti coded 5G networks. International Journal of Telecommunications, 2(02), 1–10.

    Article  Google Scholar 

  37. Shalaby, M. S., Baioumy, D. H., Hana, M. W., & Shokair, M. M. S. (2023). Intelligent reflecting surfaces: Performance simulation in millimeter wave channels. International Journal of Telecommunications, 3(01), 1–12.

    Article  Google Scholar 

  38. Shalaby, M., Helmy, D., & Shokair, M. (2023). Modeling and Simulation of Cooperative Communication based on IRSs in Tera Hertz Bands. Accepted in International Journal of Computer Applications, Scopus Indexed journal.

  39. Gao, X., Li, Y., Cheng, W., Dong, L., & Liu, P. (2023). Secure optimal precoding for user-centric cell-free massive MIMO system. IEEE Wireless Communications Letters, 12(1), 31–35. https://doi.org/10.1109/LWC.2022.3216050

    Article  Google Scholar 

  40. Ma, X., Lei, X., Mathiopoulos, P. T., Yu, K., & Tang, X. (2021). Scalable cell-free massive MIMO systems with finite resolution ADCs/DACs over spatially correlated rician fading channels. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.3243921

    Article  Google Scholar 

  41. Peng, Q., Ren, H., Pan, C., Liu, N., & Elkashlan, M. (2022). Resource allocation for cell-free massive MIMO-enabled URLLC downlink systems. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2023.3243571

    Article  Google Scholar 

  42. Shalaby, M., Shahein, M., & Shokair, M. (2022). Mathematical analysis and performance evaluation of the cell-free mMIMO networks based on cognitive relays. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09891-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Shalaby.

Ethics declarations

Conflict of interest

There is no conflict between this work and other published work.

Funding

Funding source of this work is supported by the faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The Matlab code is available on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalaby, M., Wagih Lamie, M. & Shokair, M. The Cell-Free mMIMO Network Based on IRSs: Mathematical Analysis and Performance Evaluation. Wireless Pers Commun 130, 1731–1742 (2023). https://doi.org/10.1007/s11277-023-10352-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10352-0

Keywords

Navigation