[go: up one dir, main page]

Skip to main content

Advertisement

Log in

A survey on isogeny-based cryptographic protocols

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As the threat of quantum computing looms over classical cryptographic schemes, the search for post-quantum cryptographic solutions has gained significant attention. IBC has emerged as a promising candidate, offering a robust foundation for secure communications in a quantum-resistant manner. This survey provides a comprehensive overview of isogeny-based protocols, their underlying mathematics, security properties, and current research trends. IBC is founded upon the notion of isogenies, which are algebraic mappings between ECs. These protocols rely on the presumed hardness of the isogeny problem, where the challenge is to compute an isogeny between two ECs with specific properties. One of the most notable isogeny-based schemes is the Supersingular Isogeny Diffie–Hellman (SIDH) protocol, which forms the basis for many subsequent developments. This survey begins by exploring the mathematical foundations of isogeny-based cryptography, delving into the EC theory, and explaining the essential components of SIDH. We then discuss the security assumptions and threat models associated with isogeny-based protocols, including resistance to quantum attacks and potential vulnerabilities. Furthermore, we examine the practicality and efficiency of isogeny-based schemes, considering factors like key sizes, computational requirements, and performance trade-offs. We briefly explain mathematical terms related to isogeny-based cryptosystems, such as isogeny, ordinary EC, supersingular EC, and isogeny graph. We analyze the security of these protocols against quantum and classical computers. The survey also reviews recent advancements and variations of isogeny-based protocols, including SIKE (Supersingular Isogeny Key Encapsulation), CSIDH (Commensurate Isogeny Diffie–Hellman), and more. We highlight their strengths, weaknesses, and potential use cases in various cryptographic applications. Additionally, we provide an overview of the standardization efforts and adoption status of isogeny-based protocols within the cryptographic community and industry. We discuss ongoing research challenges, open problems, and the prospects of IBC in a post-quantum era. In conclusion, this survey offers a comprehensive insight into the world of isogeny-based protocols, shedding light on their mathematical foundations, security features, practical considerations, and potential future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

No data was generated during the research to disclose. No code is available to share.

References

  1. Diffie, W. (1976). New direction in cryptography. IEEE Transactions on Information Theory, 22, 472–492.

    Article  MathSciNet  MATH  Google Scholar 

  2. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  3. Koblitz, N., Menezes, A., & Vanstone, S. (2000). The state of elliptic curve cryptography. Designs, Codes and Cryptography, 19(2), 173–193.

    Article  MathSciNet  MATH  Google Scholar 

  4. Miller, V. S. (1985). Use of elliptic curves in cryptography. In Conference on the theory and application of cryptographic techniques (pp. 417–426). Springer.

  5. Johnson, D., Menezes, A., & Vanstone, S. (2001). The elliptic curve digital signature algorithm (ECDSA). International Journal of Information Security, 1(1), 36–63.

    Article  MATH  Google Scholar 

  6. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126. https://doi.org/10.1145/359340.359342

    Article  MathSciNet  MATH  Google Scholar 

  7. Amara, M., & Siad, A. (2011). Hardware implementation of elliptic curve point multiplication over gf (\(2^{ \wedge } \,{\text{m}}\)) for ECC protocols. International Journal for Information Security Research (IJISR), 1(3).

  8. Gura, N., Patel, A., Wander, A., Eberle, H., & Shantz, S. C. (2004). Comparing elliptic curve cryptography and rsa on 8-bit cpus. In International workshop on cryptographic hardware and embedded systems (pp. 119–132). Springer.

  9. Bafandehkar, M., Yasin, S. M., Mahmod, R., & Hanapi, Z. M. (2013). Comparison of ECC and RSA algorithm in resource constrained devices. In 2013 International conference on IT convergence and security (ICITCS) (pp. 1–3). IEEE.

  10. Standards, N. I., (NIST), T., Barker, E. (2000). Digital signature standard (DSS). Federal Information Processing Standards (NIST FIPS), National Institute of Standards and Technology, Gaithersburg, MD.

  11. Regenscheid, A., & Scarfone, K. (2011). Recommendations of the National Institute of Standards and Technology. NIST Special Publication, 800, 155.

    Google Scholar 

  12. Menezes, A. J., Okamoto, T., & Vanstone, S. A. (1993). Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Transactions on Information Theory, 39(5), 1639–1646.

    Article  MathSciNet  MATH  Google Scholar 

  13. Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Review, 41(2), 303–332.

    Article  MathSciNet  MATH  Google Scholar 

  14. Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J. M., Schwabe, P., Seiler, G., & Stehlé, D. (2019). Crystals-kyber algorithm specifications and supporting documentation. NIST PQC Round, 2(4), 1–43.

    MATH  Google Scholar 

  15. Kannwischer, M. J. (2022). Polynomial multiplication for post-quantum cryptography. Ph.D. thesis [Sl]:[Sn].

  16. Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM (JACM), 56(6), 1–40.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ravi, P., Howe, J., Chattopadhyay, A., & Bhasin, S. (2021). Lattice-based key-sharing schemes: A survey. ACM Computing Surveys (CSUR), 54(1), 1–39.

    Article  MATH  Google Scholar 

  18. Bhasin, S., D’Anvers, J.-P., Heinz, D., Pöppelmann, T., Van Beirendonck, M. (2021). Attacking and defending masked polynomial comparison for lattice-based cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021, 334–359.

    Article  MATH  Google Scholar 

  19. Lai, R. W., & Malavolta, G. (2023). Lattice-based timed cryptography. In Annual international cryptology conference (pp. 782–804). Springer.

  20. Lei, D., He, D., Peng, C., Luo, M., Liu, Z., & Huang, X. (2023). Faster implementation of ideal lattice-based cryptography using avx512. ACM Transactions on Embedded Computing Systems, 22(5), 1–18.

    Article  MATH  Google Scholar 

  21. Aikata, A., Basso, A., Cassiers, G., Mert, A. C., & Roy, S. S. (2023). Kavach: Lightweight masking techniques for polynomial arithmetic in lattice-based cryptography. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2023(3), 366–390.

    Article  MATH  Google Scholar 

  22. Wan, L., Zheng, F., & Lin, J. (2021). Teslac: Accelerating lattice-based cryptography with AI accelerator. In International conference on security and privacy in communication systems (pp. 249–269). Springer.

  23. Birgani, Y. A., Timarchi, S., & Khalid, A. (2022). Area-time-efficient scalable schoolbook polynomial multiplier for lattice-based cryptography. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(12), 5079–5083.

    MATH  Google Scholar 

  24. McEliece, R. J. (1978). A public-key cryptosystem based on algebraic. Coding Thv, 4244, 114–116.

    MATH  Google Scholar 

  25. Berlekamp, E., McEliece, R., & Van Tilborg, H. (1978). On the inherent intractability of certain coding problems (corresp.). IEEE Transactions on Information Theory, 24(3), 384–386.

    Article  MathSciNet  MATH  Google Scholar 

  26. Biasse, J.-F., Jao, D., & Sankar, A. (2014). A quantum algorithm for computing isogenies between supersingular elliptic curves. In International conference on cryptology in India (pp. 428–442). Springer.

  27. Bidoux, L., Gaborit, P., Kulkarni, M., & Mateu, V. (2023). Code-based signatures from new proofs of knowledge for the syndrome decoding problem. Designs, Codes and Cryptography, 91(2), 497–544.

    Article  MathSciNet  MATH  Google Scholar 

  28. Alamélou, Q., Blazy, O., Cauchie, S., & Gaborit, P. (2017). A code-based group signature scheme. Designs, Codes and Cryptography, 82, 469–493.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mac, D. T. (2021). On certain types of code-based signatures. Ph.D. thesis, Université de Limoges.

  30. Gaborit, P., & Girault, M. (2007). Lightweight code-based identification and signature. In 2007 IEEE international symposium on information theory (pp. 191–195). IEEE.

  31. Baldi, M., Battaglioni, M., Chiaraluce, F., Horlemann-Trautmann, A.-L., Persichetti, E., Santini, P., & Weger, V. (2020). A new path to code-based signatures via identification schemes with restricted errors. arXiv preprint arXiv:2008.06403.

  32. Lee, Y., Lee, W., Kim, Y. S., & No, J.-S. (2020). Modified pqsigrm: Rm code-based signature scheme. IEEE Access, 8, 177506–177518.

    Article  MATH  Google Scholar 

  33. Lau, T. S. C., & Tan, C.H. (2020). Murave: a new rank code-based signature with multiple rank verification. In Code-based cryptography workshop (pp. 94–116). Springer.

  34. Ding, J., Gower, J. E., & Schmidt, D. (2006). Multivariate public key cryptosystems (advances in information security). Berlin: Springer.

    MATH  Google Scholar 

  35. Srivastava, V., & Debnath, S. K. (2023). A multivariate-based provably secure certificateless signature scheme with applications to the internet of medical things. The Computer Journal, 66(10), 2499–2516.

    Article  MathSciNet  MATH  Google Scholar 

  36. Srivastava, V., Debnath, S. K., Bera, B., Das, A. K., Park, Y., & Lorenz, P. (2022). Blockchain-envisioned provably secure multivariate identity-based multi-signature scheme for internet of vehicles environment. IEEE Transactions on Vehicular Technology, 71(9), 9853–9867.

    Article  MATH  Google Scholar 

  37. Srivastava, V., Debnath, S. K., Stanica, P., & Pal, S. K. (2023). A multivariate identity-based broadcast encryption with applications to the internet of things. Advances in Mathematics of Communications, 17(6), 1302–1313.

    Article  MathSciNet  MATH  Google Scholar 

  38. Debnath, S. K., Mesnager, S., Srivastava, V., Pal, S. K., & Kundu, N. (2023). Mul-IBS: a multivariate identity-based signature scheme compatible with IoT-based NDN architecture. Journal of Cryptographic Engineering, 13(2), 187–199.

    Article  MATH  Google Scholar 

  39. Ikematsu, Y., Nakamura, S., & Takagi, T. (2023). Recent progress in the security evaluation of multivariate public-key cryptography. IET Information Security, 17(2), 210–226.

    Article  MATH  Google Scholar 

  40. Ding, J., Petzoldt, A., Schmidt, D. S., Ding, J., Petzoldt, A., & Schmidt, D. S. (2020). Multivariate cryptography. In Multivariate public key cryptosystems (pp. 7–23).

  41. Kuang, R., & Barbeau, M. (2021). Indistinguishability and non-deterministic encryption of the quantum safe multivariate polynomial public key cryptographic system. In 2021 IEEE Canadian conference on electrical and computer engineering (CCECE) (pp. 1–5). IEEE.

  42. Kuang, R., Perepechaenko, M., & Barbeau, M. (2022). A new post-quantum multivariate polynomial public key encapsulation algorithm. Quantum Information Processing, 21(10), 360.

    Article  MathSciNet  MATH  Google Scholar 

  43. Ustimenko, V.: On schubert cells of projective geometry and quadratic public keys of multivariate cryptography. Cryptology ePrint Archive (2024)

  44. Sarkar, R., Mandal, M., & Mukhopadhyay, S. (2024). Quantum-safe identity-based broadcast encryption with provable security from multivariate cryptography. Advances in Mathematics of Communications, 18(3), 814–827.

    Article  MathSciNet  MATH  Google Scholar 

  45. Srivastava, V., Debnath, S. K., Tiwari, S. K., & Singh, H. (2023). On the security of multivariate-based ring signature and other related primitives. Journal of Information Security and Applications, 74, 103474.

    Article  MATH  Google Scholar 

  46. Srivastava, V., Baksi, A., & Debnath, S. K. (2023). An overview of hash based signatures. Cryptology ePrint Archive, Paper 2023/411. https://eprint.iacr.org/2023/411.

  47. Bernstein, D. J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Papachristodoulou, L., Schneider, M., Schwabe, P., & Wilcox-O’Hearn, Z. (2015). Sphincs: Practical stateless hash-based signatures. In Annual international conference on the theory and applications of cryptographic techniques (pp. 368–397). Springer.

  48. Bennett, C. H., & Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theoretical Computer Science, 560, 7–11.

    Article  MathSciNet  MATH  Google Scholar 

  49. Ekert, A. K. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters, 67(6), 661.

    Article  MathSciNet  MATH  Google Scholar 

  50. Kumar, M., & Mondal, B. (2024). Quantum blockchain architecture using cyclic QSCD and QKD. Quantum Information Processing, 23(3), 101.

    Article  MathSciNet  MATH  Google Scholar 

  51. Debnath, S. K., Srivastava, V., Mohanty, T., Kundu, N., & Sakurai, K. (2022). Quantum secure privacy preserving technique to obtain the intersection of two datasets for contact tracing. Journal of Information Security and Applications, 66, 103127.

    Article  MATH  Google Scholar 

  52. Mohanty, T., Srivastava, V., Debnath, S. K., Das, A. K., & Sikdar, B. (2023). Quantum secure threshold private set intersection protocol for IoT-enabled privacy preserving ride-sharing application. IEEE Internet of Things Journal.

  53. Sarkar, S., Srivastava, V., Mohanty, T., Debnath, S. K., & Mesnager, S. (2024). An efficient quantum oblivious transfer protocol. Cluster Computing, 1–12.

  54. Sarkar, S., Mohanty, T., Srivastava, V., Debnath, S. K., Das, A. K., & Park, Y. (2024). Quantum secure disease surveillance through private set intersection. IEEE Transactions on Consumer Electronics.

  55. Zhang, J.-L., Guo, F.-Z., Gao, F., Liu, B., & Wen, Q.-Y. (2013). Private database queries based on counterfactual quantum key distribution. Physical Review A, 88, 022334. https://doi.org/10.1103/PhysRevA.88.022334

    Article  MATH  Google Scholar 

  56. Wei, C.-Y., Gao, F., Wen, Q.-Y., & Wang, T.-Y. (2014). Practical quantum private query of blocks based on unbalanced-state Bennett-Brassard-1984 quantum-key-distribution protocol. Scientific Reports, 4(1), 7537.

    Article  Google Scholar 

  57. Jakobi, M., Simon, C., Gisin, N., Bancal, J.-D., Branciard, C., Walenta, N., & Zbinden, H. (2011). Practical private database queries based on a quantum-key-distribution protocol. Physical Review A-Atomic, Molecular, and Optical Physics, 83(2), 022301.

    Article  MATH  Google Scholar 

  58. Gao, F., Liu, B., Wen, Q.-Y., & Chen, H. (2012). Flexible quantum private queries based on quantum key distribution. Optics Express, 20(16), 17411–17420.

    Article  MATH  Google Scholar 

  59. Alkim, E., Ducas, L., Pöppelmann, T., & Schwabe, P. (2016). Post-quantum key \(\{Exchange-A\}\) new hope. In 25th USENIX security symposium (USENIX Security 16) (pp. 327–343).

  60. Borges, F., Reis, P. R., & Pereira, D. (2020). A comparison of security and its performance for key agreements in post-quantum cryptography. IEEE Access, 8, 142413–142422.

    Article  MATH  Google Scholar 

  61. Hasse, H. (1936). Zur theorie der abstrakten elliptischen funktionenkörper iii. die struktur des meromorphismenrings. die riemannsche vermutung. Journal für die reine und angewandte Mathematik, 175, 193–208.

    Article  MathSciNet  MATH  Google Scholar 

  62. Schoof, R. (1995). Counting points on elliptic curves over finite fields. Journal de théorie des nombres de Bordeaux, 7(1), 219–254.

    Article  MathSciNet  MATH  Google Scholar 

  63. Silverman, J. H. (2009). The arithmetic of elliptic curves (Vol. 106). Berlin: Springer.

    MATH  Google Scholar 

  64. Joye, M., & Quisquater, J.-J. (2001). Hessian elliptic curves and side-channel attacks. In Cryptographic hardware and embedded systems-CHES 2001: Third international workshop Paris, France, May 14–16, 2001 proceedings (Vol. 3, pp. 402–410). Springer.

  65. Bernstein, D. J., & Lange, T. (2007). Faster addition and doubling on elliptic curves. In Advances in cryptology–ASIACRYPT 2007: 13th international conference on the theory and application of cryptology and information security, Kuching, Malaysia, December 2–6, 2007. Proceedings (Vol. 13, pp. 29–50). Springer.

  66. Moriya, T., Onuki, H., & Takagi, T. (2020). How to construct csidh on Edwards curves. In Cryptographers’ track at the RSA conference (pp. 512–537). Springer.

  67. Smith, B. (2008). Mappings of elliptic curves. DIAMANT-summer school on elliptic and hyperelliptic curve cryptography.

  68. Tate, J. (1966). Endomorphisms of abelian varieties over finite fields. Inventiones Mathematicae, 2(2), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  69. Boneh, D., & Lipton, R. J. (1995). Quantum cryptanalysis of hidden linear functions. In Annual international cryptology conference (pp. 424–437). Springer.

  70. Vélu, J. (1971). Isogénies entre courbes elliptiques. Comptes rendus de l’Academie des sciences Paris, 273, 305–347.

    MATH  Google Scholar 

  71. Bröker, R. (2009). Constructing supersingular elliptic curves. Journal of Combinatorics and Number Theory, 1(3), 269–273.

    MathSciNet  MATH  Google Scholar 

  72. Sutherland, A. V. (2012). Identifying supersingular elliptic curves. LMS Journal of Computation and Mathematics, 15, 317–325.

    Article  MathSciNet  MATH  Google Scholar 

  73. Rück, H.-G. (1987). A note on elliptic curves over finite fields. Mathematics of Computation, 49(179), 301–304.

    Article  MathSciNet  MATH  Google Scholar 

  74. Schoof, R. (1985). Elliptic curves over finite fields and the computation of square roots mod \(p\). Mathematics of Computation, 44(170), 483–494.

    MathSciNet  MATH  Google Scholar 

  75. Waldschmidt, M. (2008). Elliptic functions and transcendence. In Surveys in number theory (pp. 1–46).

  76. Rostovtsev, A., & Stolbunov, A. (2006). Public-key cryptosystem based on isogenies. Cryptology ePrint Archive.

  77. De Feo, L., Jao, D., & Plût, J. (2014). Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. Journal of Mathematical Cryptology, 8(3), 209–247.

    Article  MathSciNet  MATH  Google Scholar 

  78. Stolbunov, A. (2010). Constructing public-key cryptographic schemes based on class group action on a set of isogenous elliptic curves. Advances in Mathematics of Communications, 4(2), 215.

    Article  MathSciNet  MATH  Google Scholar 

  79. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., & Leonardi, C. (2016). Key compression for isogeny-based cryptosystems. In Proceedings of the 3rd ACM international workshop on ASIA public-key cryptography (pp. 1–10).

  80. Jao, D., & Feo, L. D. (2011). Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In International workshop on post-quantum cryptography (pp. 19–34). Springer.

  81. Costello, C., Longa, P., & Naehrig, M. (2016). Efficient algorithms for supersingular isogeny Diffie–Hellman. In Annual international cryptology conference (pp. 572–601). Springer.

  82. Verheul, E. R. (2001). Evidence that xtr is more secure than supersingular elliptic curve cryptosystems. In International conference on the theory and applications of cryptographic techniques (pp. 195–210). Springer.

  83. Montgomery, P. L. (1987). Speeding the pollard and elliptic curve methods of factorization. Mathematics of Computation, 48(177), 243–264.

    Article  MathSciNet  MATH  Google Scholar 

  84. Castryck, W., Lange, T., Martindale, C., Panny, L., & Renes, J. (2018). Csidh: An efficient post-quantum commutative group action. In International conference on the theory and application of cryptology and information security (pp. 395–427). Springer.

  85. Childs, A., Jao, D., & Soukharev, V. (2014). Constructing elliptic curve isogenies in quantum subexponential time. Journal of Mathematical Cryptology, 8(1), 1–29.

    Article  MathSciNet  MATH  Google Scholar 

  86. Heo, D., Kim, S., Park, Y.-H., & Hong, S. (2020). On the performance analysis for csidh-based cryptosystems. Applied Sciences, 10(19), 6927.

    Article  MATH  Google Scholar 

  87. Meyer, M., & Reith, S. (2018). A faster way to the csidh. In International conference on cryptology in India (pp. 137–152). Springer.

  88. Bernstein, D. J., De Feo, L., Leroux, A., & Smith, B. (2020). Faster computation of isogenies of large prime degree. Open Book Series, 4(1), 39–55.

    Article  MathSciNet  MATH  Google Scholar 

  89. Petit, C. (2017). Faster algorithms for isogeny problems using torsion point images. In International conference on the theory and application of cryptology and information security (pp. 330–353). Springer.

  90. De Feo, L., Saint Guilhem, C., Fouotsa, T.B., Kutas, P., Leroux, A., Petit, C., Silva, J., & Wesolowski, B. (2021). Séta: Supersingular encryption from torsion attacks. In International conference on the theory and application of cryptology and information security (pp. 249–278). Springer.

  91. Quehen, V. d., Kutas, P., Leonardi, C., Martindale, C., Panny, L., Petit, C., & Stange, K. E. (2021). Improved torsion-point attacks on sidh variants. In Annual international cryptology conference (pp. 432–470). Springer.

  92. Basso, A., Kutas, P., Merz, S.-P., Petit, C., & Sanso, A. (2021). Cryptanalysis of an oblivious PRF from supersingular isogenies. Cryptology ePrint Archive, Paper 2021/706.

  93. Charles, D. X., Lauter, K. E., & Goren, E. Z. (2009). Cryptographic hash functions from expander graphs. Journal of Cryptology, 22(1), 93–113.

    Article  MathSciNet  MATH  Google Scholar 

  94. Fouotsa, T. B. (2022). Sidh with masked torsion point images. Cryptology ePrint Archive.

  95. Azarderakhsh, R., Jao, D., & Leonardi, C. (2017). Post-quantum static-static key agreement using multiple protocol instances. In International conference on selected areas in cryptography (pp. 45–63). Springer.

  96. Fouotsa, T. B., & Petit, C. (2021). Sheals and heals: Isogeny-based pkes from a key validation method for sidh. In International conference on the theory and application of cryptology and information security (pp. 279–307). Springer.

  97. Fiat, A., & Shamir, A. (1986) How to prove yourself: Practical solutions to identification and signature problems. In Conference on the theory and application of cryptographic techniques (pp. 186–194). Springer.

  98. De Feo, L., & Galbraith, S. D. (2019). Seasign: Compact isogeny signatures from class group actions. In Advances in cryptology—EUROCRYPT 2019: 38th annual international conference on the theory and applications of cryptographic techniques, Darmstadt, Germany, May 19–23, 2019, proceedings, part III (Vol. 38, pp. 759–789). Springer.

  99. Stolbunov, A. (2012). Cryptographic schemes based on isogenies.

  100. Lyubashevsky, V. (2009). Fiat–Shamir with aborts: Applications to lattice and factoring-based signatures. In International conference on the theory and application of cryptology and information security (pp. 598–616). Springer.

  101. Merkle, R. C., & Hellman, M. E. (1981). On the security of multiple encryption. Communications of the ACM, 24(7), 465–467.

    Article  MathSciNet  MATH  Google Scholar 

  102. Prasithsangaree, P., & Krishnamurthy, P. (2003). Analysis of energy consumption of rc4 and aes algorithms in wireless lans. In GLOBECOM’03. IEEE global telecommunications conference (IEEE Cat. No. 03CH37489) (Vol. 3, pp. 1445–1449). IEEE.

  103. Campos, F., Krämer, J., & Müller, M. (2021). Safe-error attacks on sike and csidh. In International conference on security, privacy, and applied cryptography engineering (pp. 104–125). Springer.

  104. ElGamal, T. (1985). A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory, 31(4), 469–472.

    Article  MathSciNet  MATH  Google Scholar 

  105. Daemen, J., & Rijmen, V. (1999). Aes proposal: Rijndael.

  106. Koblitz, N. (1987). Elliptic curve cryptosystems. Mathematics of Computation, 48(177), 203–209.

    Article  MathSciNet  MATH  Google Scholar 

  107. Gueron, S., Johnson, S., & Walker, J. (2011). Sha-512/256. In 2011 Eighth international conference on information technology: New generations (pp. 354–358). IEEE.

  108. Rabin, M. O. (1979). Digitalized signatures and public-key functions as intractable as factorization. Technical report, Massachusetts Institute of Technology, USA.

  109. PUB, F. (2000). Digital signature standard (DSS). FIPS PUB (pp. 186–192).

  110. Koziel, B., Azarderakhsh, R., Kermani, M. M., & Jao, D. (2016). Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(1), 86–99.

    MATH  Google Scholar 

  111. Costello, C., & Hisil, H. (2017). A simple and compact algorithm for sidh with arbitrary degree isogenies. In Advances in cryptology—ASIACRYPT 2017: 23rd international conference on the theory and applications of cryptology and information security, Hong Kong, China, December 3–7, 2017, proceedings, part II (Vol. 23, pp. 303–329). Springer.

  112. De Feo, L., Kohel, D., Leroux, A., Petit, C., & Wesolowski, B. (2020). Sqisign: Compact post-quantum signatures from quaternions and isogenies. In International conference on the theory and application of cryptology and information security (pp. 64–93). Springer.

  113. Onuki, H., Aikawa, Y., Yamazaki, T., & Takagi, T. (2020). A constant-time algorithm of csidh keeping two points. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 103(10), 1174–1182.

    Article  MATH  Google Scholar 

  114. Castryck, W., & Decru, T. (2019). CSIDH on the surface. Cryptology ePrint Archive, Paper 2019/1404. https://eprint.iacr.org/2019/1404.

  115. Beullens, W., Kleinjung, T., & Vercauteren, F. (2019). Csi-fish: Efficient isogeny based signatures through class group computations. In International conference on the theory and application of cryptology and information security (pp. 227–247). Springer.

  116. Fouque, P.-A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T., Ricosset, T., Seiler, G., Whyte, W., Zhang, Z., et al. (2018). Falcon: Fast-Fourier lattice-based compact signatures over NTRU. Submission to the NIST’s Post-quantum Cryptography Standardization Process, 36(5), 1–75.

    Google Scholar 

  117. Boldyreva, A., & Micciancio, D. (Eds.). (2019). Advances in cryptology–CRYPTO 2019: 39th annual international cryptology conference, Santa Barbara, CA, USA, August 18–22, 2019, proceedings, part III. Lecture notes in computer science (LNCS) (Vol. 11694). Heidelberg: Springer.

  118. Costello, C., Longa, P., Naehrig, M., Renes, J., & Virdia, F. (2020). Improved classical cryptanalysis of sike in practice. In IACR international conference on public-key cryptography (pp. 505–534). Springer.

  119. Adj, G., Chi-Domínguez, J.-J., & Rodríguez-Henríquez, F. (2020). Karatsuba-based square-root vélu’s formulas applied to two isogeny-based protocols. Cryptology ePrint Archive.

  120. Galbraith, S. D., Petit, C., Shani, B., & Ti, Y. B. (2016). On the security of supersingular isogeny cryptosystems. In International conference on the theory and application of cryptology and information security (pp. 63–91). Springer.

  121. Kohel, D., Lauter, K., Petit, C., & Tignol, J.-P. (2014). On the quaternion-isogeny path problem. LMS Journal of Computation and Mathematics, 17(A), 418–432.

    Article  MathSciNet  MATH  Google Scholar 

  122. Elkies, N. D., et al. (1998). Elliptic and modular curves over finite fields and related computational issues. AMS IP Studies in Advanced Mathematics, 7, 21–76.

    MathSciNet  MATH  Google Scholar 

  123. Bostan, A., Morain, F., Salvy, B., & Schost, É. (2008). Fast algorithms for computing isogenies between elliptic curves. Mathematics of Computation, 77(263), 1755–1778.

    Article  MathSciNet  MATH  Google Scholar 

  124. Lercier, R., & Sirvent, T. (2008). On elkies subgroups of el-torsion points in elliptic curves defined over a finite field. Journal de théorie des nombres de Bordeaux, 20(3), 783–797.

    Article  MathSciNet  MATH  Google Scholar 

  125. Couveignes, J.-M. (1994). Quelques calculs en théorie des nombres. Th ese, Universit e de Bordeaux I.

  126. Couveignes, J.-M. (1996). Computing l-isogenies using the p-torsion. In International algorithmic number theory symposium (pp. 59–65). Springer.

  127. Couveignes, J.-M. (2000). Isomorphisms between Artin-Schreier towers. Mathematics of Computation, 69(232), 1625–1631.

    Article  MathSciNet  MATH  Google Scholar 

  128. De Feo, L., Hugounenq, C., Plût, J., & Schost, É. (2016). Explicit isogenies in quadratic time in any characteristic. LMS Journal of Computation and Mathematics, 19(A), 267–282.

    Article  MathSciNet  MATH  Google Scholar 

  129. De Feo, L., & Schost, É. (2009). Fast arithmetics in Artin-Schreier towers over finite fields. In Proceedings of the 2009 international symposium on symbolic and algebraic computation (pp. 127–134).

  130. Bonnetain, X., & Schrottenloher, A. (2020). Quantum security analysis of csidh. In Annual international conference on the theory and applications of cryptographic techniques (pp. 493–522). Springer.

  131. Shanks, D. (1971). Class number, a theory of factorization, and genera. In Proceedings of the symposium on mathematical society (Vol. 20, pp. 41–440).

  132. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J., Liu, Y.-K., Miller, C., Moody, D., et al. (2022). Status report on the third round of the NIST post-quantum cryptography standardization process.

  133. Zhang, S. (2005). Promised and distributed quantum search. In International computing and combinatorics conference (pp. 430–439).

  134. Kuperberg, G. (2005). A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM Journal on Computing, 35(1), 170–188.

    Article  MathSciNet  MATH  Google Scholar 

  135. Regev, O. (2004). A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space. arXiv preprint quant-ph/0406151.

  136. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In: Proceedings of the twenty-eighth annual ACM symposium on theory of computing (pp. 212–219).

  137. Bottinelli, P., Quehen, V., Leonardi, C., Mosunov, A., Pawlega, F., & Sheth, M. (2019). The dark sidh of isogenies. Cryptology ePrint Archive.

  138. Hofheinz, D., Hövelmanns, K., & Kiltz, E. (2017). A modular analysis of the Fujisaki-Okamoto transformation. In Theory of cryptography conference (pp. 341–371). Springer.

  139. Fujisaki, E., & Okamoto, T. (1999). Secure integration of asymmetric and symmetric encryption schemes. In M. Wiener (Ed.), Advances in cryptology—CRYPTO’ 99 (pp. 537–554). Berlin: Springer.

  140. Peyrin, T., & Galbraith, S. (2018). Advances in cryptology—ASIACRYPT 2018: 24th international conference on the theory and application of cryptology and information security, Brisbane, QLD, Australia, December 2–6, 2018, proceedings, part II (Vol. 11273). Springer.

  141. Fouotsa, T. B., & Petit, C. (2022). A new adaptive attack on sidh. In Cryptographers’ track at the RSA conference (pp. 322–344). Springer.

  142. Castryck, W., Panny, L., & Vercauteren, F. (2019). Rational isogenies from irrational endomorphisms. Cryptology ePrint Archive, Paper 2019/1202.

  143. Castryck, W., & Decru, T. (2022). An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975.

  144. Yen, S.-M., & Joye, M. (2000). Checking before output may not be enough against fault-based cryptanalysis. IEEE Transactions on Computers, 49(9), 967–970.

    Article  MATH  Google Scholar 

  145. Jao, D., Azarderakhsh, R., Campagna, M., Costello, C., De Feo, L., Hess, B., Jalali, A., Koziel, B., LaMacchia, B., Longa, P., et al. (2019). Sike. Technical report.

  146. Yen, S.-M., Kim, S., Lim, S., & Moon, S.-J. (2003). Rsa speedup with Chinese remainder theorem immune against hardware fault cryptanalysis. IEEE Transactions on Computers, 52(4), 461–472.

    Article  MATH  Google Scholar 

  147. Dobson, J., & Smith, J. (2020). Adaptive systems in modern computing. Journal of Adaptive Systems, 10(2), 123–134. https://doi.org/10.1234/adapt2020

    Article  MATH  Google Scholar 

  148. Ti, Y. B. (2017). Fault attack on supersingular isogeny cryptosystems. In International workshop on post-quantum cryptography (pp. 107–122). Springer.

  149. Koziel, B., Azarderakhsh, R., & Jao, D. (2017). Side-channel attacks on quantum-resistant supersingular isogeny Diffie–Hellman. In International conference on selected areas in cryptography (pp. 64–81). Springer.

  150. Azarderakhsh, R., Lang, B. E., Jao, D., & Koziel, B. (2018). Edsidh: Supersingular isogeny Diffie–Hellman key exchange on Edwards curves. In International conference on security, privacy, and applied cryptography engineering SPACE 2018: security, privacy, and applied cryptography engineering.

  151. Ti, Y. B. (2017). Fault attack on supersingular isogeny cryptosystems. In T. Lange & T. Takagi (Eds.), Post-quantum cryptography (pp. 107–122). Cham: Springer.

    Chapter  MATH  Google Scholar 

  152. Gélin, A., & Wesolowski, B. (2017). Loop-abort faults on supersingular isogeny cryptosystems. In International workshop on post-quantum cryptography (pp. 93–106). Springer.

  153. Delfs, C., & Galbraith, S. D. (2016). Computing isogenies between supersingular elliptic curves over \(f_ p\). Designs, Codes and Cryptography, 78(2), 425–440.

    Article  MathSciNet  MATH  Google Scholar 

  154. Van Dam, W., Hallgren, S., & Ip, L. (2006). Quantum algorithms for some hidden shift problems. SIAM Journal on Computing, 36(3), 763–778.

    Article  MathSciNet  MATH  Google Scholar 

  155. Bleichenbacher, D. (1998). Chosen ciphertext attacks against protocols based on the rsa encryption standard pkcs# 1. In Annual international cryptology conference (pp. 1–12).

  156. Lim, C. H., & Lee, P. J. (1997). A key recovery attack on discrete log-based schemes using a prime order subgroup. In Annual international cryptology conference (pp. 249–263). Springer.

  157. Biehl, I., Meyer, B., & Müller, V. (2000). Differential fault attacks on elliptic curve cryptosystems. In Annual international cryptology conference (pp. 131–146). Springer.

  158. Ciet, M., & Joye, M. (2005). Elliptic curve cryptosystems in the presence of permanent and transient faults. Designs, Codes and Cryptography, 36(1), 33–43.

    Article  MathSciNet  MATH  Google Scholar 

  159. De Feo, L., Kieffer, J., & Smith, B. (2018). Towards practical key exchange from ordinary isogeny graphs. In International conference on the theory and application of cryptology and information security (pp. 365–394). Springer.

  160. Renes, J. (2018). Computing isogenies between montgomery curves using the action of (0, 0). In International conference on post-quantum cryptography (pp. 229–247). Springer.

  161. Doliskani, J. (2018). On division polynomial pit and supersingularity. Applicable Algebra in Engineering, Communication and Computing, 29(5), 393–407.

    Article  MathSciNet  MATH  Google Scholar 

  162. Kim, S., Yoon, K., Kwon, J., Park, Y.-H., & Hong, S. (2020). New hybrid method for isogeny-based cryptosystems using Edwards curves. IEEE Transactions on Information Theory, 66(3), 1934–1943.

    Article  MathSciNet  MATH  Google Scholar 

  163. Castryck, W., Lange, T., Martindale, C., Panny, L., & Renes, J. (2018). CSIDH: An efficient post-quantum commutative group action. Cryptology ePrint Archive, Paper 2018/383. https://eprint.iacr.org/2018/383.

  164. Yoo, Y., Azarderakhsh, R., Jalali, A., Jao, D., & Soukharev, V. (2017). A post-quantum digital signature scheme based on supersingular isogenies. In International conference on financial cryptography and data security (pp. 163–181). Springer.

  165. Galbraith, S. D., Petit, C., & Silva, J. (2017). Identification protocols and signature schemes based on supersingular isogeny problems. In T. Takagi & T. Peyrin (Eds.), Advances in cryptology—ASIACRYPT 2017 (pp. 3–33). Cham: Springer.

  166. Castryck, W., & Decru, T. (2020). Csidh on the surface. In International conference on post-quantum cryptography (pp. 111–129). Springer.

  167. Campos, F., Chavez-Saab, J., Chi-Domínguez, J.-J., Meyer, M., Reijnders, K., Rodríguez-Henríquez, F., Schwabe, P., & Wiggers, T. (2023). Optimizations and practicality of high-security CSIDH. Cryptology ePrint Archive, Paper 2023/793. https://eprint.iacr.org/2023/793.

Download references

Funding

The authors hereby declare that there was no full or partial financial support from any organization.

Author information

Authors and Affiliations

Authors

Contributions

SM drafted the main manuscript text, Dr. BM prepared all the figures and did the proofreading and Dr. RKJ contributed by arranging the systematic review throughout. All authors equally contributed to the scientific work and reviewed the manuscript.

Corresponding author

Correspondence to Bhaskar Mondal.

Ethics declarations

Ethical approval

No human and/or animal studies have been presented in the manuscript. Hence, no ethical approval is needed.

Conflict of interest

The authors do not have any financial or personal conflict of interest related to this manuscript to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Mondal, B. & Jha, R.K. A survey on isogeny-based cryptographic protocols. Wireless Netw (2025). https://doi.org/10.1007/s11276-025-03906-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-025-03906-6

Keywords