[go: up one dir, main page]

Skip to main content

Advertisement

Log in

HEEC: a hybrid unequal energy efficient clustering for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

An important challenge in wireless sensor networks is energy conservation. Recently, several hybrid, dynamic and static clustering protocols have been proposed to solve this challenge. In this paper, a hybrid unequal energy efficient clustering is proposed to improve previous methods and increase lifetime of the network. In the proposed protocol, a new mechanism called clustering strategy is used. This mechanism, based on arrangement of nodes in a network, determines whether nodes should use information of their neighbors or should not use this information. This strategy helps to reduce overhead considerably. On the other hand, clustering is unequal so that nodes closer to base station (BS) have more energy to receive and relay data towards BS. In order to reduce overhead, clustering is designed as hybrid static–dynamic so that transmitting control message for clustering is not required at each round. Two new techniques are proposed for routing. First, assistance to cluster heads mechanism which allows cluster heads to get help from some of its member nodes which have suitable energy and distance to help sharing cluster’s load. In other words, a new intra-cluster multi-hop routing is proposed. Second new technique is discretion license which is performed in real time and allows the nodes to prevent transmissions of packets that may arrive at a destination in an incomplete form. In addition, inter-cluster routing use a new technique based on layering is proposed. Simulation results show that the proposed method has reduced network overhead, increased network stability, energy balance and lifetime of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  2. Marappan, P., & Rodrigues, P. (2016). An energy efficient routing protocol for correlated data using CL-LEACH in WSN. Wireless Networks, 22(4), 1415–1423. https://doi.org/10.1007/s11276-015-1063-4.

    Article  Google Scholar 

  3. Rehan, W., Fischer, S., Rehan, M., & Rehmani, M. H. (2017). A comprehensive survey on multichannel routing in wireless sensor networks. Journal of Network and Computer Applications, 95, 1–25.

    Article  Google Scholar 

  4. Pazzi, R. W., et al. (2017). A clustered trail-based data dissemination protocol for improving the lifetime of duty cycle enabled wireless sensor networks. Wireless Networks, 23(1), 177–192.

    Article  Google Scholar 

  5. Zareei, M., Islamb, M., Rosales, C., Mansoor, N., Goudarzi, S., & Rehmani, M. H. (2018). Mobility-aware medium access control protocols for wireless sensor networks: A survey. Journal of Network and Computer Applications, 104, 21–37. https://doi.org/10.1016/j.jnca.2017.12.009.

    Article  Google Scholar 

  6. Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45, 769–784. https://doi.org/10.1016/j.rser.2015.02.021.

    Article  Google Scholar 

  7. Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219. https://doi.org/10.1016/j.jnca.2015.09.008.

    Article  Google Scholar 

  8. Lin, D., & Wang, Q. (2017). A game theory based energy efficient clustering routing protocol for WSNs. Wireless Networks, 23(4), 1101–1111. https://doi.org/10.1007/s11276-016-1206-2.

    Article  Google Scholar 

  9. Li, J., Silva, B., Diyan, M., Cao, Z., & Han, K. (2018). A clustering based routing algorithm in IoT aware Wireless Mesh Networks. Sustainable Cities and Society, 40, 657–666. https://doi.org/10.1016/j.scs.2018.02.017.

    Article  Google Scholar 

  10. Abdul-Qawy, A. S. H., & Srinivasulu, T. (2018). SEES: a scalable and energy-efficient scheme for green IoT-based heterogeneous wireless nodes. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-0758-7.

    Article  Google Scholar 

  11. Bozorgi, S. M., Rostami, A. S., Rahmani, A. A., & Balas, V. E. (2017). A new clustering protocol for energy harvesting-wireless sensor networks. Computers & Electrical Engineering, 64, 233–247.

    Article  Google Scholar 

  12. Bozorgi, S. M., Amiri, M. G., Rostami, A. S. & Mohanna, F. (2015). A novel dynamic multi-hop clustering protocol based on renewable energy for energy harvesting wireless sensor networks. In 2015 2nd international conference on knowledge-based engineering and innovation (KBEI), Tehran (pp. 619–624).

  13. Sarkar, A., & Senthil Murugan, T. (2017). Cluster head selection for energy efficient and delay-less routing in wireless sensor network. Wireless Networks. https://doi.org/10.1007/s11276-017-1558-2.

    Article  Google Scholar 

  14. Jafarizadeh, V., Keshavarzi, A., & Derikvand, T. (2017). Efficient cluster head selection using Naive Bayes classifier for wireless sensor networks. Wireless Networks, 23(3), 779–785.

    Article  Google Scholar 

  15. Mittal, N., Singh, U., & Sohi, B. S. (2017). A stable energy efficient clustering protocol for wireless sensor networks. Wireless Networks, 23(6), 1809–1821. https://doi.org/10.1007/s11276-016-1255-6.

    Article  Google Scholar 

  16. Haseeb, K., et al. (2017). Adaptive energy aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 23(6), 1953–1966. https://doi.org/10.1007/s11276-016-1269-0.

    Article  Google Scholar 

  17. Tamandani, Y. K. & Bokhari, M. U. (2016). SEPFL routing protocol based on fuzzy logic control to extend the lifetime and throughput of the wireless sensor network. Wireless Networks, 22, 647–653. https://doi.org/10.1007/s11276-015-0997-x.

    Article  Google Scholar 

  18. Yang, L., Lu, Y., Zhong, Y., Wu, X., & Xing, S. (2016). A hybrid, game theory based, and distributed clustering protocol for wireless sensor networks. Wireless Networks, 22(3), 1007–1021.

    Article  Google Scholar 

  19. Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks, 22(3), 945–957. https://doi.org/10.1007/s11276-015-1013-1.

    Article  Google Scholar 

  20. Lee, J.-S., & Cheng, W.-L. (2012). Fuzzy-logic-based clustering approach for wireless sensor networks using energy predication. IEEE Sensors Journal, 12(9), 2891–2897. https://doi.org/10.1109/JSEN.2012.2204737.

    Article  Google Scholar 

  21. Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer Applications, 46, 198–226. https://doi.org/10.1016/j.jnca.2014.09.005.

    Article  Google Scholar 

  22. Malathi, L., Gnanamurthy, R. K., & Chandrasekaran, K. (2015). Energy efficient data collection through hybrid unequal clustering for wireless sensor networks. Computers & Electrical Engineering, 48, 358–370. https://doi.org/10.1016/j.compeleceng.2015.06.019.

    Article  Google Scholar 

  23. Zanjireh, M. M., & Larijani, H. (2015). A survey on centralised and distributed clustering routing algorithms for WSNs(PDF). In IEEE 81st vehicular technology conference. Glasgow, Scotland: IEEE, Springer.

  24. Younis, O., & Fahmy, S. (2004). HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379. https://doi.org/10.1109/TMC.2004.41.

    Article  Google Scholar 

  25. Lin, C. H., & Tsai, M. J. (2006). A comment on HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 5, 1471–1472. https://doi.org/10.1109/TMC.2006.141.

    Article  Google Scholar 

  26. Hu, Y., & Niu, Y. (2016). An energy-efficient overlapping clustering protocol in WSNs. Wireless Networks. https://doi.org/10.1007/s11276-016-1434-5.

    Article  Google Scholar 

  27. Gupta, V., & Pandey, R. (2016). An improved energy aware distributed unequal clustering protocol for heterogeneous wireless sensor networks. Engineering Science and Technology an International Journal. https://doi.org/10.1016/j.jestch.2015.12.015.

    Article  Google Scholar 

  28. Mittal, N., Singh, U., Salgotra, R., & Sohi, B. S. (2017). A boolean spider monkey optimization based energy efficient clustering approach for WSNs. Wireless Networks. https://doi.org/10.1007/s11276-017-1459-4.

    Article  Google Scholar 

  29. Mirzaie, M., & Mazinani, S. M. (2017). MCFL: an energy efficient multi-clustering algorithm using fuzzy logic in wireless sensor network. Wireless Networks. https://doi.org/10.1007/s11276-017-1466-5.

    Article  Google Scholar 

  30. Neamatollahi, P., Naghibzadeh, M., & Abrishami, S. (2017). Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks. IEEE Sensors Journal, 17(20), 6837–6844.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Massoud Bidgoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorgi, S.M., Bidgoli, A.M. HEEC: a hybrid unequal energy efficient clustering for wireless sensor networks. Wireless Netw 25, 4751–4772 (2019). https://doi.org/10.1007/s11276-018-1744-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1744-x

Keywords