[go: up one dir, main page]

Skip to main content

Advertisement

Log in

An arbitrated quantum signature protocol based on the chained CNOT operations encryption

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

At present, the encryption scheme used by most arbitrated quantum signature (AQS) protocols is quantum one-time pad (QOTP) which encrypts data qubit by qubit. Though QOTP can achieve high security for data encryption, it is not suitable for AQS. There are many attacks on AQS using QOTP. In this paper, we propose an AQS protocol based on another encryption scheme called the chained CNOT operations, which encrypts quantum message ensemble. Our protocol preserves all merits in the similar AQS schemes and has better security. Security analysis shows that our protocol cannot be forged and disavowed under the existing attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Zeng, G.H., Ma, W.P., Wang, X.M., et al.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098–1100 (2001)

    Google Scholar 

  2. Gottesman, D., Chuang, I.L.: Quantum digital signatures. arXiv:quant-ph/0105032 (2001)

  3. Barnum, H., Crepeau, C., Gottesman, D., Smith, A., Tapp, A.: Authentication of quantum messages. In: Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pp. 449C458. IEEE (2002)

  4. Zeng, G.H., Keitel, C.H.: Arbitrated quantum signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  MathSciNet  Google Scholar 

  5. Curty, M., Lutkenhaus, N.: Comment on “Arbitrated quantum-signature scheme”. Phys. Rev. A 77(4), 046301 (2008)

    ADS  Google Scholar 

  6. Zeng, G.H.: Reply to comment on arbitrated quantum-signature scheme. Phys. Rev. A 78(1), 016301 (2008)

    ADS  MathSciNet  Google Scholar 

  7. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    ADS  MathSciNet  Google Scholar 

  8. Zou, X.F., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 042325 (2010)

    ADS  MathSciNet  Google Scholar 

  9. Li, Q., Li, C.Q., Long, D.Y., et al.: Efficient arbitrated quantum signature and its proof of security. Quantum Inf. Process. 12(7), 2427 (2013)

    ADS  MATH  MathSciNet  Google Scholar 

  10. Luo, Y.P., Hwang, T.: Arbitrated quantum signature of classical messages without using authenticated classical channels. Quantum Inf. Process. 12(5), 0634 (2013)

    MathSciNet  Google Scholar 

  11. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. arXiv:1106.5318v1 [quant-ph] (2011)

  12. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    ADS  Google Scholar 

  13. Sun, Z., Du, R., Long, D.: Improving the security of arbitrated quantum signature protocols. arXiv:1107.2459v3 [quant-ph] (2011)

  14. Wang, Y.j., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum crypotosystem. Int. J. Theor. Phys. (2013). doi:10.1007/s10773-01349-59

  15. Zou, X.F., Qiu, D.: Arbitrated quantum signature schemes: attacks and security. FAW-AAIM 2013, LNCS 7924, 48C59 pp (2013)

  16. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(4), 0554 (2013)

    Google Scholar 

  17. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    ADS  MATH  MathSciNet  Google Scholar 

  18. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175C179. IEEE (1984)

  19. AJ, Menezes, van Oorschot, P.C., Scott, A.V.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Google Scholar 

  20. Curty, M., Santos, D.J., Perez, E., Garcia-Fernandez, P.: Qubit authentication. Phys. Rev. A 66(2), 022301 (2002)

    ADS  MathSciNet  Google Scholar 

  21. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    Article  ADS  Google Scholar 

  22. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351C406 (2001)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (NSFC) under Grant Nos. U1304613 and 11204379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Hong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, FG., Shi, JH. An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf Process 14, 2171–2181 (2015). https://doi.org/10.1007/s11128-015-0981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0981-5

Keywords