[go: up one dir, main page]

Skip to main content
Log in

A set of statistical radial binary patterns for tree species identification based on bark images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper deals with bark texture representation at high scale-space levels for tree species identification. The proposed approach, named, a set of statistical radial binary patterns (sSRBP), is based on the combination of a novel scale-space sampling and an LBP-like radial encoding in the distribution level. This method aims at capturing and encoding large bark structure information. The multi-scale neighborhood is formed by a set of concentric ring-shaped scale levels, in each of which the intensity distribution is represented by statistical features that provide a compact and information-preserving representation of the neighborhood. Then, the gradual distribution variation over scale levels is encoded by a macro pattern code. For each bark sample, five statistical descriptors are obtained and contribute to enhancing the texture representativeness and discriminative power. We evaluated the performances of the proposed approach on four different bark datasets and found that the novel scale-space sampling significantly improves the bark structure representation leading to enhanced performances and outperforming competitive state-of-the-art LBP-like methods. Furthermore, experiments on the color representation of bark samples improve the performances on challenging bark datasets. Moreover, comparative study between the handcrafted sSRBP texture descriptor and convolutional neural network features shows interesting generalization results on the very large BarkNet dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.imageclef.org/

  2. http://www.vicos.si/Downloads/TRUNK12

  3. Provided by the vision Lab, TU, Vienna for scientific purpose.

  4. http://eidolon.univ-lyon2.fr/~remi1/Bark-101/

  5. https://www.imageclef.org/lifecLEF/2017/plant

  6. ISRBP\(_{CT}^{4}\) stands for the concatenation of Central Tendency (CT) ISRBP descriptors, i.e., ISRBP\(_{CT}=\textit {ISRBP}_{Mean}^{4}\oplus \) ISRBP\(_{Med}^{4}\).

  7. For the MSJLBP and PRICoLBP methods, the authors shared C and C++ codes respectively whereas we use Matlab implementations for all methods under consideration in this experiment.

  8. For the LS-LCoLBP method, there is no publicly available code.

References

  1. Ahonen T, Hadid A, Pietikäinen M (2004) Face recognition with local binary patterns. In: European conference on computer vision, pp 469–481. Springer

  2. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. In: Scandinavian conference on image analysis, pp 61–70. Springer

  3. Belhumeur P, Chen D, Feiner S, Jacobs D, Kress W, Ling H, Lopez I, Ramamoorthi R, Sheorey S, White S, Zhang L (2008) Searching the world’s herbaria: a system for visual identification of plant species. In: European conference on computer vision (ECCV), pp 116–129

  4. Bertrand S, Cerutti G, Tougne L (2017) Bark recognition to improve leaf-based classification in didactic tree species identification. In: VISAPP 2017-12Th international conference on computer vision theory and applications

  5. Boudra S, Yahiaoui I, Behloul A (2015) A comparison of multi-scale local binary pattern variants for bark image retrieval. In: International conference on advanced concepts for intelligent vision systems, pp 764–775. Springer

  6. Boudra S, Yahiaoui I, Behloul A (2017) Statistical radial binary patterns (SRBP) for bark texture identification. In: International conference on advanced concepts for intelligent vision systems, pp 101–113. Springer

  7. Boudra S, Yahiaoui I, Behloul A (2018) Bark identification using improved statistical radial binary patterns. In: 2018 International conference on content-based multimedia indexing (CBMI), pp 1–6

  8. Bressane A, Roveda JAF, Martins ACG (2015) Pattern recognition in trunk images based on co-occurrence descriptors: a proposal applied to tree species identification. In: Computational intelligence (LA-CCI), 2015 latin america congress on, pp 1–6. IEEE

  9. Carpentier M, Giguere P, Gaudreault J (2018) Tree species identification from bark images using convolutional neural networks. In: 2018 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1075–1081. IEEE

  10. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2(3):27

    Google Scholar 

  11. Chi Z, Houqiang L, Chao W (2003) Plant species recognition based on bark patterns using novel gabor filter banks. In: Neural networks and signal processing, 2003. Proceedings of the 2003 international conference on, vol 2. IEEE, pp 1035–1038

  12. Cula OG, Dana KJ (2004) 3d texture recognition using bidirectional feature histograms. Int J Comput Vis 59(1):33–60

    Article  Google Scholar 

  13. Godet J (2012) Guide des écorces des arbres d’Europe: Reconnaitre et comparer les espèces. Delachaux et niestlé

  14. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  15. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using lbp variance (LBPV) with global matching. Pattern recognition 43(3):706–719

    Article  Google Scholar 

  16. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778

  17. Huang ZK, Huang DS, Du JX, Quan ZH, Guo SB (2006) Bark classification based on gabor filter features using RBPNN neural network. In: International conference on neural information processing, pp 80–87. Springer

  18. Huang Zk, Huang DS, Quan ZH (2006) Bark classification using RBPNN based on gabor filter in different color space. In: Information acquisition, 2006 IEEE international conference on, pp 946–950. IEEE

  19. Huang ZK, Quan ZH, Du JX (2006) Bark classification based on contourlet filter features using RBPNN. In: International conference on intelligent computing, pp 1121–1126. Springer

  20. Jing J, Zhang H, Wang J, Li P, Jia J (2013) Fabric defect detection using gabor filters and defect classification based on LBP and tamura method. J Text Inst 104(1):18–27

    Article  Google Scholar 

  21. Lakmann R (1998) Barktex benchmark database of color textured images

  22. Le-Viet T, Hoang VT (2019) Local binary pattern based on image gradient for bark image classification. In: Tenth international conference on signal processing systems. International society for optics and photonics, vol 11071, p 110710p

  23. Leung T, Malik J (2001) Representing and recognizing the visual appearance of materials using three-dimensional textons. Int J Comput Vis 43(1):29–44

    Article  Google Scholar 

  24. Liu L, Fieguth P (2012) Texture classification from random features. IEEE Transactions on Pattern Analysis and Machine Intelligence 34(3):574–586

    Article  Google Scholar 

  25. Liu L, Fieguth P, Clausi D, Kuang G (2012) Sorted random projections for robust rotation-invariant texture classification. Pattern Recogn 45(6):2405–2418

    Article  Google Scholar 

  26. Liu L, Fieguth P, Guo Y, Wang X, Pietikäinen M. (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recogn 62:135–160

    Article  Google Scholar 

  27. Liu L, Fieguth P, Zhao G, Pietikäinen M., Hu D (2016) Extended local binary patterns for face recognition. Inf Sci 358:56–72

    Article  Google Scholar 

  28. Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Transactions on Image Processing 23(7):3071–3084

    Article  MathSciNet  Google Scholar 

  29. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vis Comput 30(2):86–99

    Article  Google Scholar 

  30. Mäenpää T, Pietikäinen M (2003) Multi-scale binary patterns for texture analysis. In: Scandinavian conference on image analysis, pp 885–892. Springer

  31. Mirmehdi M (2008) Handbook of texture analysis. Imperial College Press

  32. Mouine S, Yahiaoui I, Verroust-Blondet A (2013) Plant species recognition using spatial correlation between the leaf margin and the leaf salient points. In: ICIP 2013-IEEE international conference on image processing. IEEE

  33. Mouine S, Yahiaoui I, Verroust-Blondet A, Joyeux L, Selmi S, Goëau H (2013) An android application for leaf-based plant identification. In: Proceedings of the 3rd ACM conference on international conference on multimedia retrieval, pp 309–310. ACM

  34. Murala S, Maheshwari R, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  35. Mzoughi O, Yahiaoui I, Boujemaa N, Zagrouba E (2013) Advanced tree species identification using multiple leaf parts image queries. In: Image processing (ICIP), 2013 20th IEEE international conference on, pp 3967–3971. IEEE

  36. Mzoughi O, Yahiaoui I, Boujemaa N, Zagrouba E (2016) Semantic-based automatic structuring of leaf images for advanced plant species identification. Multimed Tools Appl 75(3):1615–1646

    Article  Google Scholar 

  37. Nanni L, Lumini A, Brahnam S (2012) Survey on LBP based texture descriptors for image classification. Expert Syst Appl 39(3):3634–3641

    Article  Google Scholar 

  38. Nguyen TP, Vu NS, Manzanera A (2016) Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173:1565–1577

    Article  Google Scholar 

  39. Nilsback ME, Zisserman A (2009) Delving Deeper into the whorl of flower segmentation. Image Vision Comput

  40. Ojala T, Maenpaa T, Pietikainen M, Viertola J, Kyllonen J, Huovinen S (2002) Outex-new framework for empirical evaluation of texture analysis algorithms. In: Object recognition supported by user interaction for service robots, vol 1. IEEE, pp 701–706

  41. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971–987

    Article  Google Scholar 

  42. Orjuela Vargas SA, Yañez Puentes JP, Philips W (2014) The geometric local textural patterns (GLTP). Springer, Berlin, pp 85–112

    Google Scholar 

  43. Porebski A, Vandenbroucke N, Macaire L (2012) Supervised texture classification: color space or texture feature selection? Pattern Anal Appl

  44. Porebski A, Vandenbroucke N, Macaire L, Hamad D (2014) A new benchmark image test suite for evaluating colour texture classification schemes. Multimed Tools Appl 70(1):543–556

    Article  Google Scholar 

  45. Qi X, Qiao Y, Li CG, Guo J (2013) Multi-scale joint encoding of local binary patterns for texture and material classification. In: BMVC

  46. Qi X, Xiao R, Li C, Qiao Y, Guo J, Tang X (2014) Pairwise rotation invariant co-occurrence local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(11):2199–2213

    Article  Google Scholar 

  47. Qian X, Hua XS, Chen P, Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recogn 44(10-11):2502–2515

    Article  Google Scholar 

  48. Ratajczak R, Bertrand S, Crispim-Junior C, Tougne L (2019) Efficient bark recognition in the wild. In: International conference on computer vision theory and applications (VISAPP 2019)

  49. Remeš V, Haindl M (2019) Bark recognition using novel rotationally invariant multispectral textural features. Pattern Recognition Letters

  50. Satpathy A, Jiang X, Eng HL (2014) LBP-based edge-texture features for object recognition. IEEE Trans Image Process 23(5):1953–1964

    Article  MathSciNet  Google Scholar 

  51. Sixta T (2011) Image and video-based recognition of natural objects. Ph.D. thesis. Diploma thesis. Czech Technical University in Prague. Faculty of Electrical Engineering

  52. Šulc M, Matas J (2013) Kernel-mapped histograms of multi-scale LBPs for tree bark recognition. In: Image and vision computing New Zealand (IVCNZ), 2013 28th international conference of, pp 82–87. IEEE

  53. Šulc M, Matas J (2017) Fine-grained recognition of plants from images. Plant Methods 13(1):115

    Article  Google Scholar 

  54. Svab M (2014) Computer-vision-based tree trunk recognition. Bsc thesis, Fakulteta za raunalnitvo in informatiko. Univerza v Ljubljani. Slovenia

  55. Tuceryan M, Jain AK (1993) Texture analysis. In: Handbook of pattern recognition and computer vision, pp 235–276. World scientific

  56. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1-2):61–81

    Article  Google Scholar 

  57. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11):2032–2047

    Article  Google Scholar 

  58. Wan YY, Du JX, Huang DS, Chi Z, Cheung YM, Wang XF, Zhang GJ (2004) Bark texture feature extraction based on statistical texture analysis. In: Intelligent multimedia, video and speech processing, 2004. Proceedings of 2004 international symposium on, pp 482–485. IEEE

  59. Wang K, Bichot CE, Li Y, Li B (2017) Local binary circumferential and radial derivative pattern for texture classification. Pattern Recogn 67:213–229

    Article  Google Scholar 

  60. Wendel A, Sternig S, Godec M (2011) Automated identification of tree species from images of the bark, leaves and needles. In: 16Th computer vision winter workshop, pp 67. Citeseer

  61. Wojtech M (2011) Bark: a field guide to trees of the northeast. University press of new england

  62. Wolf L, Hassner T, Taigman Y (2008) Descriptor based methods in the wild. In: Workshop on faces in’real-life’images: detection, alignment, and recognition

  63. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision (ICCV’05), vol 1, pp 786–791

  64. Zhao Y, Huang DS, Jia W (2012) Completed local binary count for rotation invariant texture classification. IEEE Trans Image Process 21(10):4492–4497

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Safia Boudra or Itheri Yahiaoui.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudra, S., Yahiaoui, I. & Behloul, A. A set of statistical radial binary patterns for tree species identification based on bark images. Multimed Tools Appl 80, 22373–22404 (2021). https://doi.org/10.1007/s11042-020-08874-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-08874-x

Keywords

Navigation