Abstract
It is estimated that nearly 90% of children on the autism spectrum exhibit sensory atypicalities. What aspects of sensory processing are affected in autism? Although sensory processing can be studied along multiple dimensions, two of the most basic ones involve examining instantaneous sensory responses and how the responses change over time. These correspond to the dimensions of ‘sensitivity’ and ‘habituation’. Results thus far have indicated that autistic individuals do not differ systematically from controls in sensory acuity/sensitivity. However, data from studies of habituation have been equivocal. We have studied habituation in autism using two measures: galvanic skin response (GSR) and magneto-encephalography (MEG). We report data from two independent studies. The first study, was conducted with 13 autistic and 13 age-matched neurotypical young adults and used GSR to assess response to an extended metronomic sequence. The second study involved 24 participants (12 with an ASD diagnosis), different from those in study 1, spanning the pre-adolescent to young adult age range, and used MEG. Both studies reveal consistent patterns of reduced habituation in autistic participants. These results suggest that autism, through mechanisms that are yet to be elucidated, compromises a fundamental aspect of sensory processing, at least in the auditory domain. We discuss the implications for understanding sensory hypersensitivities, a hallmark phenotypic feature of autism, recently proposed theoretical accounts, and potential relevance for early detection of risk for autism.


Similar content being viewed by others
References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders-5. American Journal of Psychiatry (5th Ed.). Washington, DC: American Psychiatric Association.
Ashwin, E., Ashwin, C., Rhydderch, D., Howells, J., & Baron-Cohen, S. (2009). Eagle-eyed visual acuity: An experimental investigation of enhanced perception in autism. Biological Psychiatry, 65(1), 17–21. https://doi.org/10.1016/j.biopsych.2008.06.012.
Autistic Self-Advocacy Network (n.d.). https://autisticadvocacy.org/
Avery, S. N., VanDerKlok, R. M., Heckers, S., & Blackford, J. U. (2016). Impaired face recognition is associated with social inhibition. Psychiatry Research, 236, 53–57. https://doi.org/10.1016/j.psychres.2015.12.035.
Baron-Cohen, S. (2017). Editorial perspective: Neurodiversity—a revolutionary concept for autism and psychiatry. Journal of Child Psychology and Psychiatry, 58(6), 744–747.
Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-analysis of sensory modulation symptoms in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(1), 1–11. https://doi.org/10.1007/s10803-008-0593-3.
Ben-Sasson, A., & Podoly, T. Y. (2020). Sensory habituation as a shared mechanism for sensory over-responsivity and obsessive–compulsive symptoms. Frontiers in Integrative Neuroscience. https://doi.org/10.3389/fnint.2020.00032.
Bennetto, L., Kuschner, E. S., & Hyman, S. L. (2007). Olfaction and taste processing in autism. Biological Psychiatry, 62(9), 1015–1021. https://doi.org/10.1016/j.biopsych.2007.04.019.
Bernal, M. E., & Miller, W. H. (1970). Electrodermal and cardiac responses of schizophrenic children to sensory stimuli. Psychophysiology, 7(2), 155–168. https://doi.org/10.1111/j.1469-8986.1970.tb02222.x.
Blakemore, S. J., Tavassoli, T., Calò, S., Thomas, R. M., Catmur, C., Frith, U., et al. (2006). Tactile sensitivity in Asperger syndrome. Brain and Cognition, 61(1), 5–13. https://doi.org/10.1016/j.bandc.2005.12.013.
Bölte, S., Schlitt, S., Gapp, V., Hainz, D., Schirman, S., Poustka, F., et al. (2012). A close eye on the eagle-eyed visual acuity hypothesis of autism. Journal of Autism and Developmental Disorders, 42(5), 726–733. https://doi.org/10.1007/s10803-011-1300-3.
Bonnel, A. C., Mottron, L., Peretz, I., Trudel, M., Gallun, E., & Bonnel, A. M. (2003). Enhanced pitch sensitivity in individuals with autism: A signal detection analysis. Journal of Cognitive Neuroscience, 15(2), 1–10. https://doi.org/10.1162/089892903321208169.
Cascio, C., McGlone, F., Folger, S., Tannan, V., Baranek, G., Pelphrey, K. A., et al. (2008). Tactile perception in adults with autism: A multidimensional psychophysical study. Journal of Autism and Developmental Disorders, 38(1), 127–137. https://doi.org/10.1007/s10803-007-0370-8.
Cohen, D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents. Science, 161(3843), 784–786. https://doi.org/10.1126/science.161.3843.784.
Cohen-Kashi Malina, K., Jubran, M., Katz, Y., & Lampl, I. (2013). Imbalance between excitation and inhibition in the somatosensory cortex produces postadaptation facilitation. Journal of Neuroscience., 33(19), 8463–8471. https://doi.org/10.1523/JNEUROSCI.4845-12.2013.
Coppola, G., Parisi, V., Di Lorenzo, C., Serrao, M., Magis, D., Schoenen, J., et al. (2013). Lateral inhibition in visual cortex of migraine patients between attacks. Journal of Headache and Pain, 14, 20. https://doi.org/10.1186/1129-2377-14-20.
DePape, A.-M. R., Hall, G. B. C., Tillmann, B., & Trainor, L. J. (2012). Auditory processing in high-functioning adolescents with autism spectrum disorder. Public Library of Science One, 7(9), e44084. https://doi.org/10.1371/journal.pone.0044084.
Dinstein, I., Heeger, D. J., & Behrmann, M. (2015). Neural variability: friend or foe? Trends in Cognitive Science, 19(6), 322–328. https://doi.org/10.1016/j.tics.2015.04.005.
Dunn, W. (1999). The sensory profile: User’s manual. San Antonio, TX: Pearson Assessments.
Goodwin, M. S., Mazefsky, C., Ioannidis, S., Erdoğmuş, D., & Siegel, M. (2019). Predicting aggression to others in youth with autism using a wearable biosensor. Autism Research. https://doi.org/10.1002/aur.2151.
Fenning, R. M., Baker, J. K., Baucom, B. R., Erath, S. A., Howland, M. A., & Moffitt, J. (2017). Electrodermal variability and symptom severity in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 47, 1062–1072. https://doi.org/10.1007/s10803-016-3021-0.
Ferri, R., Agarwal, E. M., Lanuzza, B., Musumeci, S. A., & Pennisi, G. (2003). The mismatch negativity and the P3a components of the auditory event-related potentials in autistic low functioning subjects. Clinical Neuropsychology, 114(9), 1671–1680. https://doi.org/10.1016/s1388-2457(03)00153-6.
Foss-Feig, J. H., Stavropoulos, K. K. M., McPartland, J. C., Wallace, M. T., Stone, W. L., & Key, A. P. (2018). Electrophysiological response during auditory gap detection: Biomarker for sensory and communication alterations in autism spectrum disorder? Developmental Neuropsychology, 43(2), 109–122. https://doi.org/10.1016/s1388-2457(03)00153-6.
Gomot, M., Giard, M. H., Adrien, J. L., Barthélémy, C., & Bruneau, N. (2002). Hypersensitivity to acoustic change in children with autism: Electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology, 39(5), 577–584.
Guiraud, J. A., Kushnerenko, E., Tomalski, P., Davies, K., Ribeiro, H., Johnson, M. H., et al. (2011). Differential habituation to repeated sounds in infants at high risk for autism. NeuroReport, 22(16), 845–849. https://doi.org/10.1097/WNR.0b013e32834c0bec.
Haigh, S. M., Heeger, D. J., Dinstein, I., Minshew, N., & Behrmann, M. (2015). Cortical variability in the sensory-evoked response in autism. Journal of Autism and Developmental Disorders, 45(5), 1176–1190. https://doi.org/10.1007/s10803-014-2276-6.
Hämäläinen, M., Hari, R., Ilmoniemi, R. J., Knuutila, J., & Lounasmaa, O. V. (1993). Magnetoencephalography—Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65, 413–497. https://doi.org/10.1103/RevModPhys.65.413.
Heaton, P., Hermelin, B., & Pring, L. (1998). Autism and pitch processing: A precursor for savant musical ability? Music Perception, 15(3), 291–305. https://doi.org/10.2307/40285769.
Hornix, B. E., Havekes, R., & Kas, M. J. H. (2019). Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neuroscience & Biobehavioral Reviews, 97, 138–151. https://doi.org/10.1016/j.neubiorev.2018.02.010.
Horvath, T. B., & Meares, R. A. (1973). The relevance of the neurophysiological concepts of excitation and inhibition to clinical psychiatry. Australian and New Zealand Journal of Psychiatry, 7, 114–120. https://doi.org/10.3109/00048677309159730.
Hudac, C. M., Stessman, H. A. F., DesChamps, T. D., Kresse, A., Faja, S., Neuhaus, E., et al. (2017). Exploring the heterogeneity of neural social indices for genetically distinct etiologies of autism. Journal of Neurodevelopmental Disorders. https://doi.org/10.1186/s11689-017-9199-4.
Ince, R. A. A., Jaworska, K., Gross, J., Panzeri, S., van Rijsbergen, N. J., Rousselet, G. A., et al. (2016). The deceptively simple N170 reflects network information processing mechanisms involving visual feature coding and transfer across hemispheres. Cerebral Cortex, 26(11), 4123–4135.
James, A. L., & Barry, R. J. (1984). Cardiovascular and electrodermal responses to simple stimuli in autistic, retarded and normal children. International Journal of Psychophysiology, 1(2), 179–193. https://doi.org/10.1016/0167-8760(84)90037-0.
Khalfa, S., Bruneau, N., Rogé, B., Georgieff, N., Veuillet, E., Adrien, J.-L., et al. (2004). Increased perception of loudness in autism. Hearing Research, 198(1–2), 87–92. https://doi.org/10.1016/j.heares.2004.07.006.
Kleinhans, N. M., Richards, T., Weaver, K., Johnson, L. C., Dawson, G., & Aylward, E. (2010). Association between amygdala response to emotional faces and social anxiety in autism spectrum disorders. Neuropsychologia, 48(12), 3665–3670. https://doi.org/10.1016/j.neuropsychologia.2010.07.022.
Koh, H. C., Milne, E., & Dobkins, K. (2010). Spatial contrast sensitivity in adolescents with autism spectrum disorders. Journal of Autism and Developmental Disorders, 40(8), 978–987. https://doi.org/10.1007/s10803-010-0953-7.
Kolesnik, A., Ali, J. B., Gliga, T., Guiraud, J., Charman, T., Johnson, M. H., et al. (2019). Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Translational Psychiatry, 9(1), 46. https://doi.org/10.1038/s41398-019-0393-x.
Kotecha, R., Pardos, M., Wang, Y., Wu, T., Horn, P., Brown, D., et al. (2009). Modeling the developmental patterns of auditory evoked magnetic fields in children. PLoS ONE, 4(3), e4811.
Kuhl, P. K., Coffey-Corina, S., Padden, D., & Dawson, G. (2005). Links between social and linguistic processing of speech in preschool children with autism: Behavioral and electrophysiological measure. Developmental Science, 8(1), 9–20. https://doi.org/10.1111/j.1467-7687.2004.00384.x.
Kuiper, M. W. M., Verhoeven, E. W. M., & Geurts, H. M. (2019). Stop making noise! Auditory sensitivity in adults with an autism spectrum disorder diagnosis: Physiological habituation and subjective detection thresholds. Journal of Autism and Developmental Disorders, 49, 2116–2128.
Kwakye, L. D., Foss-Feig, J. H., Cascio, C. J., Stone, W. L., & Wallace, M. T. (2011). Altered auditory and multisensory temporal processing in autism spectrum disorders. Frontiers in Integrative Neuroscience, 4, 129. https://doi.org/10.3389/fnint.2010.00129.
Lane, A. E., Young, R. L., Baker, A. E. Z., & Angley, M. T. (2010). Sensory processing subtypes in autism: Association with adaptive behavior. Journal of Autism and Developmental Disorders, 40(1), 112–122. https://doi.org/10.1007/s10803-009-0840-2.
Lawson, R. A., Papadakis, A. A., Higginson, C. I., Barnett, J. E., Wills, M. C., Strang, J. F., et al. (2015). Everyday executive function impairments predict comorbid psychopathology in autism spectrum and attention deficit hyperactivity disorders. Neuropsychology, 29(3), 445–453. https://doi.org/10.1037/neu0000145.
Le Couteur, A., Rutter, M., & Lord, C. (2003). Autism diagnostic interview—Revised (ADI-R). Los Angeles: Western Psychological Services.
Leekam, S. R., Nieto, C., Libby, S. J., Wing, L., & Gould, J. (2007). Describing the sensory abnormalities of children and adults with autism. Journal of Autism and Developmental Disorders, 37(5), 894–910. https://doi.org/10.1007/s10803-006-0218-7.
Lim, C. L., Barry, R. J., Gordon, E., Sawant, A., Rennie, C., & Yiannikas, C. (1996). The relationship between quantified EEG and skin conductance level. International Journal of Psychophysiology, 21(2–3), 151–162. https://doi.org/10.1016/0167-8760(95)00049-6.
Lord, C., Rutter, M., DiLarore, P., Risi, S., Gotham, K., & Bishop, S. (2012). Autism diagnostic observation schedule—Second edition (ADOS-2). Manual (part I): Modules 1–4. Torrane, CA: Western Psychological Services.
Maister, L., & Plaisted-Grant, K. C. (2011). Time perception and its relationship to memory in autism spectrum conditions. Developmental Science., 14(6), 1311–1322. https://doi.org/10.1111/j.1467-7687.2011.01077.x.
Marco, E. J., Hinkley, L. B. N., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism: A review of neurophysiologic findings. Pediatric Research, 69(5 Pt 2), 48R–54R. https://doi.org/10.1203/PDR.0b013e3182130c54.
McCormick, C., Hessl, D., Macari, S., Ozonoff, S., Cherie, G., & Rogers, S. (2014). Electrodermal and behavioral responses of children with autism spectrum disorders to sensory and repetitive stimuli. Autism Research, 7, 468–480. https://doi.org/10.1002/aur.1382.
Montagu, J. D. (1963). Habituation of the psycho-galvanic reflex during serial tests. Journal of Psychosomatic Research, 7(3), 199–214. https://doi.org/10.1016/0022-3999(63)90004-7.
Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin., 125(6), 826–859. https://doi.org/10.1037/0033-2909.125.6.826.
O’Riordan, M. A., & Passetti, F. (2006). Discimination in autism within different sensory modalities. Journal of Autism and Developmental Disorders, 36(5), 665–675. https://doi.org/10.1007/s10803-006-0106-1.
Orekhova, E. V., Stroganova, T. A., Prokofyev, A. O., Nygren, G., Gillberg, C., & Elam, M. (2008). Sensory gating in young children with autism: Relation to age, IQ, and EEG gamma oscillations. Neuroscience Letters., 434(2), 218–223. https://doi.org/10.1016/j.neulet.2008.01.066.
Owren, T., & Stenhammer, T. (2013). Neurodiversity: Accepting autistic difference. Learning Disability Practice, 16(4), 32–37.
Plichta, M. M., Grimm, O., Morgen, K., Mier, D., Sauer, C., Haddad, L., et al. (2014). Amygdala habituation: A reliable fMRI phenotype. Neuroimage, 103, 383–390. https://doi.org/10.1016/j.neuroimage.2014.09.059.
Rogers, S. J., & Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255–1268. https://doi.org/10.1111/j.1469-7610.2005.01431.x.
Rosburg, T., Haueisen, J., & Sauer, H. (2002). Habituation of the auditory evoked field component N100m and its dependence on stimulus duration. Clinical Neurophysiology, 113, 421–428. https://doi.org/10.1016/S1388-2457(01)00727-1.
Rosburg, T., Trautner, P., Boutros, N. N., Korzyukov, O. A., Schaller, C., Elger, C. E., et al. (2006). Habituation of auditory evoked potentials in intracranial and extracranial recordings. Psychophysiology, 43(2), 137–144. https://doi.org/10.1111/j.1469-8986.2006.00391.x.
Robertson, C. E., & Cohen, S. B. (2017). Sensory perception in autism. Nature Reviews Neuroscience, 18(11), 671–684. https://doi.org/10.1038/nrn.2017.112.
Schupak, B. M., Parasher, R. K., & Pinto Zipp, G. (2016). Reliability of electrodermal activity: Quantifying sensory processing in children with autism. The American Journal of Occupational Therapy. https://doi.org/10.5014/ajot.2016.018291.
Sinha, P., Kjelgaard, M. M., Gandhi, T. K., Tsourides, K., Cardinaux, A. L., Pantazis, D., et al. (2014). Autism as a disorder of prediction. Proceedings of the National Academy of Science, 111(42), 15220–15225. https://doi.org/10.1073/pnas.1416797111.
Sinclair, D., Oranje, B., Razak, K. A., Siegel, S. J., & Schmid, S. (2017). Sensory processing in autism spectrum disorders and Fragile X syndrome-from the clinic to animal models. Neuroscience & Biobehavioral Reviews, 76, 235–253. https://doi.org/10.1016/j.neubiorev.2016.05.029.
Sokolov, E. N. (1960). Neuronal models and the orienting response. In M. A. B. Brazier (Ed.), The central nervous system and behavior III. New York: Macy Foundation.
Stevens, S., & Gruzelier, J. (1984). Electrodermal activity to auditory stimuli in autistic, retarded, and normal children. Journal of Autism and Developmental Disorders, 14(3), 245–260.
Swartz, J. R., Wiggins, J. L., Carrasco, M., Lord, C., & Monk, C. S. (2013). Amygdala habituation and prefrontal functional connectivity in youth with autism spectrum disorders. Journal of the American Academy of Child & Adolescent Psychiatry, 52(1), 84–93. https://doi.org/10.1016/j.jaac.2012.10.012.
Szelag, E., Kowalska, J., Galkowski, T., & Pöppel, E. (2004). Temporal processing deficits in high-functioning children with autism. British Journal of Psychology, 95(3), 269–282. https://doi.org/10.1348/0007126041528167.
Tadel, F., Baillet, S., Mosher, J. C., Pantaiz, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011(879716), 1–13. https://doi.org/10.1155/2011/879716.
Tam, F. I., King, J. A., Geisler, D., Korb, F. M., Sareng, J., Ritschel, F., et al. (2017). Altered behavioural and amygdala habituation in high-functioning adults with autism spectrum disorder: An fMRI study. Scientific Reports, 7(1), 13611. https://doi.org/10.1038/s41598-017-14097-2.
Taulu, S., Kajola, M., & Simola, J. (2004). Suppression of interference and artifacts by the signal space separation method. Brain Topography, 16, 269–275.
Taulu, S., & Simola, J. (2006). Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Physics in Medicine & Biology, 51, 1759–1768. https://doi.org/10.1088/0031-9155/51/7/008.
Tomchek, S. D., & Dunn, W. (2007). Sensory processing in children with and without autism: A comparative study using the short sensory profile. American Journal of Occupational Therapy, 61(2), 190–200.
Van Engeland, H. (1984). The electrodermal orienting response to auditive stimuli in autistic children, normal children, mentally retarded children, and child psychiatric patients. Journal of Autism and Developmental Disorders, 14, 261–279. https://doi.org/10.5014/ajot.61.2.190.
White, L. (1974). Organic factors and psychophysiology in childhood schizophrenia. Psychological Bulletin., 81(4), 238–255. https://doi.org/10.1037/h0036236.
Yehuda, S., Shtrom, C., & Peter, R. (1979). A possible link between intelligence level and habituation of the GSR. Integrateive Journal of Neuroscience, 9(1), 53–55.
Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., et al. (2011). Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature, 477(7363), 171–178. https://doi.org/10.1038/nature10360.
Acknowledgments
This work was supported by INSPIRE Faculty Scheme, DST, Govt. of India to Tapan K. Gandhi, the Simons Center for the Social Brain at MIT and by the Simons Foundation Autism Research Initiative to Pawan Sinha. We have benefited greatly from discussions with Drs. Marlene Behrmann, Stephen Camarata, Ami Klin, and Leonard Rappaport, and also comments from several parents of autistic children. We also wish to thank Molly Jabeck and James Borders of the MGH Institute of Health Professions.
Author information
Authors and Affiliations
Contributions
TG carried out GSR and MEG data collection, conducted data analysis, participated in the design of the research, and contributed to drafting and revisions of the manuscript. KT and TG carried out MEG data collection, conducted data analysis, participated in the design of the research, and contributed to drafting and revisions of the manuscript. NS helped with participant enrollment in India, clinical characterization and data collection. AC helped with subject recruitment and clinical characterization of participants in the United States, carried out MEG and GSR data collection, and contributed to the manuscript. DP participated in MEG data collection and data analysis. WJ participated in data analysis and manuscript writing. MK participated in the design of the research, carried out data collection, undertook clinical characterization and helped draft the manuscript. PS conceptualized the study, participated in the design of the research, analyzed data, and drafted the manuscript. All authors edited and approved the final version of the manuscript.
Corresponding authors
Ethics declarations
Conflict of interest
The authors report no conflicts of interest for this study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gandhi, T.K., Tsourides, K., Singhal, N. et al. Autonomic and Electrophysiological Evidence for Reduced Auditory Habituation in Autism. J Autism Dev Disord 51, 2218–2228 (2021). https://doi.org/10.1007/s10803-020-04636-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10803-020-04636-8