[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Human Thermoregulation and Injury Evaluation in Fire Environments: A Review

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Fire environments impose severe effects on the human body through thermal radiation, smoke particles, and toxic gases. This review focuses on human injury mechanisms including human thermoregulation, heat strains, skin injuries, and inhalation injuries in fire environments. Human thermal models and their coupling system with CFD and thermal sweating manikin were proposed to investigate human physiological responses in various environments with better prediction accuracy, based on which heat strains were evaluated. Heat and mass transfer simulation, and bench-scale and full-scale experimental studies were adopted to evaluate skin burn injuries. Moreover, testing techniques and standards related to both the protective fabric and clothing were summarized. The difficulty in inhalation injuries study lies in the direct measurement of the airflow field inside the respiratory tract. Through three-dimensional modeling of the respiratory tract and experimental methods coupled with CFD simulations, thermal injuries, and particle obstruction injuries of fire smoke particles can be evaluated. Given these, future studies need to be focused on improving the prediction accuracy of modeling human injury mechanisms, developing next-generation fabrics, flexible and wearable sensors, early warning and decision-making systems, and smart personal protective equipment (PPE). The review can offer fundamental knowledge for human injury assessment, the development of next-generation personal protective clothing, and guidance for maximum safe working time and emergency rescue for firefighters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. International Association of Fire and Rescue Services (CTIF) (2019) World fire statistics. The Center of Fire Statistics. https://www.ctif.org/news/world-fire-statistics-issue-no-24-2019

  2. Alarifi AA, Dave J, Phylaktou HN, Aljumaiah OA, Andrews GE (2014) Effects of fire-fighting on a fully developed compartment fire: temperatures and emissions. Fire Saf J 68:71–80. https://doi.org/10.1016/j.firesaf.2014.05.014

    Article  Google Scholar 

  3. Drysdale D (2011) An introduction to fire dynamics. Wiley. ISBN 9780470319031

  4. Karlsson B, Quintiere JG (2022) Enclosure fire dynamics, 2nd edn. CRC Press. ISBN 9781138058668

  5. Yuan MQ, Li N, Wei YC, Yang J (2019) Physiological and perceptual responses while wearing stab-resistant body armor in hot and humid environment. J Therm Biol 86:1–7. https://doi.org/10.1016/j.jtherbio.2019.102451

    Article  Google Scholar 

  6. Eglin CM (2007) Physiological responses to fire-fighting: thermal and metabolic considerations. J Hum–Environ Syst 10:7–18. https://doi.org/10.1618/jhes.10.7

    Article  Google Scholar 

  7. Baxter CS, Ross CS, Fabian T, Borgerson JL, Shawon J, Gandhi PD, Dalton JM, Lockey JE (2010) Ultrafine particle exposure during fire suppression—is it an important contributory factor for coronary heart disease in firefighters? J Occup Environ Med 52:791–796. https://doi.org/10.1016/j.buildenv.2016.06.031

    Article  Google Scholar 

  8. Katić K, Li RL, Zeiler W (2016) Thermophysiological models and their applications: a review. Build Environ 106:286–300. https://doi.org/10.1016/j.buildenv.2016.06.031

    Article  Google Scholar 

  9. Salata F, Golasi L, Ciancio V, Rosso F (2018) Dressed for the season: clothing and outdoor thermal comfort in the Mediterranean population. Build Environ 146:50–63. https://doi.org/10.1016/j.buildenv.2018.09.041

    Article  Google Scholar 

  10. Zhao J, Zhu N, Lu SL (2009) Productivity model in hot and humid environment based on heat tolerance time analysis. Build Environ 44:2202–2207. https://doi.org/10.1016/j.buildenv.2009.01.003

    Article  Google Scholar 

  11. Henriques FC, Moritz AR (1947) Studies of thermal injury: I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. Am J Pathol 23(4):530–549

    Google Scholar 

  12. Lesniak AY (2017) The effect of personal protective equipment on firefighter occupational performance. In: Theses and dissertations—kinesiology and health promotion, p 45. https://uknowledge.uky.edu/khp_etds/45

  13. Li Y, Li FZ, Liu YX, Luo ZX (2004) An integrated model for simulating interactive thermal processes in human–clothing system. J Therm Biol 29(7–8):567–575. https://doi.org/10.1016/j.jtherbio.2004.08.071

    Article  Google Scholar 

  14. Fu M, Weng WG, Chen WW, Luo N (2016) Review on modeling heat transfer and thermoregulatory responses in human body. J Therm Biol 62:189–200. https://doi.org/10.1016/j.jtherbio.2016.06.018

    Article  Google Scholar 

  15. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 85(1):5–34. https://doi.org/10.1152/jappl.1998.85.1.5

    Article  Google Scholar 

  16. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Trans 77:21–36. http://eprints.lib.hokudai.ac.jp/dspace/bitstream/2115/37901/1/1

  17. Takada S, Kobayashi H, Matsushita T (2009) Human thermal model of human body fitted with individual characteristics of body temperature regulation. Build Environ 44:463–470. https://doi.org/10.1016/j.buildenv.2008.04.007

    Article  Google Scholar 

  18. Wissler EH (1961) Steady-state distribution in man. J Appl Physiol 16:734–740. https://doi.org/10.1152/jappl.1961.16.4.734

    Article  Google Scholar 

  19. Stolwijk JAJ, Hardy JD (1966) Temperature regulation in man—a theoretical study. Pflügers Arch Eur J Physiol 291:129–162. https://doi.org/10.1007/BF00412787

    Article  Google Scholar 

  20. Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA Technical Report. NASA, Washington, DC

  21. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972. https://doi.org/10.1152/jappl.1999.87.5.1957

    Article  Google Scholar 

  22. Huizenga C, Zhang H, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699. https://doi.org/10.1016/S0360-1323(00)00061-5

    Article  Google Scholar 

  23. Tanabe SI, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646. https://doi.org/10.1016/S0378-7788(02)00014-2

    Article  Google Scholar 

  24. Salloum M, Ghaddar N, Ghali K (2007) A new transient bioheat model of the human body and its integration to clothing models. Int J Therm Sci 46:371–384. https://doi.org/10.1016/j.ijthermalsci.2006.06.017

    Article  Google Scholar 

  25. Karaki W, Ghaddar N, Ghali K, Kuklane K, Holmér I, Vanggaard L (2013) Human thermal response with improved AVA modeling of the digits. Int J Therm Sci 67:41–52. https://doi.org/10.1016/j.ijthermalsci.2012.12.010

    Article  Google Scholar 

  26. Yang J, Weng WG, Fu M (2015) A coupling system to predict the core and skin temperatures of human wearing protective clothing in hot environments. Appl Ergon 51:363–369. https://doi.org/10.1016/j.apergo.2015.06.002

    Article  Google Scholar 

  27. Yang J, Weng WG, Zhang BT (2014) Experimental and numerical study of physiological responses in hot environments. J Therm Biol 45:54–61. https://doi.org/10.1016/j.jtherbio.2014.07.010

    Article  Google Scholar 

  28. Yang J, Weng WG, Fu M (2014) Coupling of a thermal sweating manikin and a thermal model for simulating human thermal response. In: 2014 International symposium on safety science and technology, Beijing, China, 2014, vol 84, pp 893–897. https://doi.org/10.1016/j.proeng.2014.10.512

  29. Weng WG, Han XF, Fu M (2014) An extended multi-segmented human bioheat model for high temperature environments. Int J Heat Mass Transf 75:504–513. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.091

    Article  Google Scholar 

  30. Raimundo AM, Figueiredo AR (2009) Personal protective clothing and safety of firefighters near a high intensity fire front. Fire Saf J 44:514–521. https://doi.org/10.1016/j.firesaf.2008.10.007

    Article  Google Scholar 

  31. Yang J, Ni SJ, Weng WG (2017) Modelling heat transfer and physiological responses of unclothed human body in hot environment by coupling CFD simulation with thermal model. Int J Therm Sci 120:437–445. https://doi.org/10.1016/j.ijthermalsci.2017.06.028

    Article  Google Scholar 

  32. Joshi A, Wang FM, Kang ZX, Yang B, Zhao DL (2022) A three-dimensional thermoregulatory model for predicting human thermophysiological responses in various thermal environments. Build Environ 207:108506. https://doi.org/10.1016/j.buildenv.2021.108506

    Article  Google Scholar 

  33. Smith CE (1991) A transient three-dimensional model of the thermal system. Kansas State University, Kansas

    Google Scholar 

  34. Fu G (1995) A transient, 3D mathematical thermal model for the clothed human. Kansas State University, Kansas

    Google Scholar 

  35. Sun XY (2012) Development of an improved thermal model of the human body and an experimental investigation of heat transfer from a moving cylinder. Kansas State University, Kansas, pp 59–62

    Google Scholar 

  36. Nelson DA, Charbonnel S, Curran AR, Marttila EA, Fiala D, Mason PA, Ziriax JM (2009) A high-resolution voxel model for predicting local tissue temperatures in humans subjected to warm and hot environments. J Biomech Eng 131:041003. https://doi.org/10.1115/1.3002765

    Article  Google Scholar 

  37. Ferreira MS, Yanagihara JI (2009) A transient three-dimensional heat transfer model of the human body. Int Commun Heat Mass Transf 36:718–724. https://doi.org/10.1016/j.icheatmasstransfer.2009.03.010

    Article  Google Scholar 

  38. Sahebl HA, Mahdi AA, Al-Amir QR (2020) CFD analysis for the effect of personal ventilation combined with mixing ventilation on performance index (ADPI) and thermal human comfort. IOP Conf Ser Mater Sci Eng 978:012033. https://doi.org/10.1088/1757-899x/978/1/012033

    Article  Google Scholar 

  39. Danca P, Bode F, Nastase I, Meslem A (2018) CFD simulation of a cabin thermal environment with and without human body—thermal comfort evaluation. E3S Web Conf. https://doi.org/10.1051/e3sconf/20183201018

    Article  Google Scholar 

  40. Jiang YY, Yanai E, Nishimura K, Zhang HL, Abe N, Shinohara M, Wakatsuki K (2010) An integrated numerical simulator for thermal performance assessments of firefighters’ protective clothing. Fire Saf J 45:314–326. https://doi.org/10.1016/j.firesaf.2010.06.003

    Article  Google Scholar 

  41. Sorensen DN, Voigt LK (2003) Modelling flow and heat transfer around a seated human body by computational fluid dynamics. Build Environ 38:753–762. https://doi.org/10.1016/S0360-1323(03)00027-1

    Article  Google Scholar 

  42. Jamin A, Bosschaerts W, Nastase I, Janssens B (2021) Review of the existing state of the art regarding the use of CFD and human thermophysiological models for the vehicular comfort assessment. IOP Conf Ser Earth Environ Sci 664:012012. https://doi.org/10.1088/1755-1315/664/1/012012

    Article  Google Scholar 

  43. Conceical E, Geraldo DRB, Lucio M (2013) Application of computational fluid dynamics differential model coupled with human thermal comfort integral model in ventilated indoor spaces. In: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 2013

  44. Han XF, Weng WG, Shen SF (2010) Assessment of human safety and thermal comfort in high-temperature environment: CFD and human thermoregulation model. AIP Conf Proc 1233:782–786. https://doi.org/10.1063/1.3452277

    Article  Google Scholar 

  45. Cropper PC, Yang T, Cook M, Fiala D, Yousaf R (2010) Coupling a model of human thermoregulation with computational fluid dynamics for predicting human–environment interaction. J Build Perform Simul 3:233–243. https://doi.org/10.1080/19401491003615669

    Article  Google Scholar 

  46. Cropper PC, Yang T, Cook M, Fiala D, Yousaf R (2008) Exchange of simulation data between CFD programmes and a multisegmented human thermal comfort model. Netw Comf Energy Use Build 62:1–19. https://doi.org/10.1016/j.jeconbus.2009.07.002

    Article  Google Scholar 

  47. Zhu SW, Kato S, Ooka R, Sakoi T, Tsuzuki K (2008) Development of a computational thermal manikin applicable in a non-uniform thermal environment—Part 2: coupled simulation using Sakoi’s human thermal physiological model. HVAC&R Res 14:545–564. https://doi.org/10.1080/10789669.2008.10391025

    Article  Google Scholar 

  48. Tong Y, Cropper PC, Cook MJ, Yousaf R, Fiala D (2007) A new simulation system to predict human–environment thermal interactions in naturally ventilated buildings. In: Building simulation, 2007

  49. Wolki D, Treeck C, Zhang Y, Satratbucker S, Bolineni S, Holm A (2011) Individualisation of virtual thermal manikin models for predicting thermophysical responses. In: Indoor air conference, 2011, Austin, TX, USA

  50. Martinez N, Psikuta A, Corberán JM, Rossi RM, Annaheim S (2017) Multi-sector thermo-physiological head simulator for headgear research. Int J Biometeorol 61:273–285. https://doi.org/10.1007/s00484-016-1209-9

    Article  Google Scholar 

  51. Lai DD, Wei FR, Lu YH, Wang FM (2015) Evaluation of a hybrid personal cooling system using a manikin operated in constant temperature mode and thermoregulatory model control mode in warm conditions. Text Res J 87:46–56. https://doi.org/10.1177/0040517515622152

    Article  Google Scholar 

  52. Wissler EH, Havenith G (2009) A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air. Eur J Appl Physiol 105:797–808. https://doi.org/10.1007/s00421-008-0966-5

    Article  Google Scholar 

  53. Psikuta A, Wang LC, Rossi RM (2013) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. https://doi.org/10.1080/15459624.2013.766562

    Article  Google Scholar 

  54. Rugh JP, Farrington RB, Bharathan D, Vlahinos A, Burke R, Huizenga C, Zhang H (2004) Predicting human thermal comfort in a transient nonuniform thermal environment. Eur J Appl Physiol 92:721–727. https://doi.org/10.1007/s00421-004-1125-2

    Article  Google Scholar 

  55. Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192. https://doi.org/10.1088/0967-3334/29/2/002

    Article  Google Scholar 

  56. Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sci 16:61–75. https://doi.org/10.2114/jpa.16.61

    Article  Google Scholar 

  57. Redortier B, Voelcker T (2010) Implementation of thermo-physiological control on a multi-zone manikin. In: 8th International meeting for thermal manikin and modeling, Victoria, Canada, 2010

  58. Wang FM (2011) Physiological model controlled sweating thermal manikin: can it replace human subjects? J Ergon. https://doi.org/10.4172/2165-7556.1000e103

    Article  Google Scholar 

  59. Canetti EFD, Gayton S, Schram B, Pope R, Orr RM (2022) Psychological, physical, and heat stress indicators prior to and after a 15-minute structural firefighting task. Biology 104:1–16. https://doi.org/10.3390/biology11010104

    Article  Google Scholar 

  60. Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398. https://doi.org/10.2486/indhealth.44.388

    Article  Google Scholar 

  61. Botsford JH (1971) A wet globe thermometer for environmental heat measurement. Am Ind Hyg Assoc J 32:1–10. https://doi.org/10.1080/0002889718506400

    Article  Google Scholar 

  62. Belding HS, Hatch TF (1955) Index for evaluating heat stress in terms of resulting physiological strain. Heat Pip Air Cond 27:129–136. https://doi.org/10.3382/ps.0520035

    Article  Google Scholar 

  63. Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). Int J Biometeorol 56:481–494. https://doi.org/10.1007/s00484-011-0454-1

    Article  Google Scholar 

  64. ISO7933 (2004) Ergonomics of the thermal environment—analytical determination and interpretation of heat stress using calculation of the predicted heat strain. International Standardization Organization, Geneva

    Google Scholar 

  65. Wang FM, Kuklane K, Gao C, Holmér I (2011) Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments? Physiol Meas 32:239–249. https://doi.org/10.1088/0967-3334/32/2/007

    Article  Google Scholar 

  66. Mcneill MB, Parsons KC (1999) Appropriateness of international heat stress standards for use in tropical agricultural environments. Ergonomics 42:779–797. https://doi.org/10.1080/001401399185289

    Article  Google Scholar 

  67. ISO9886 (2004) Ergonomics. Evaluation of thermal strain by physiological measurements. International Standard Organisation, Geneva

    Google Scholar 

  68. World Health Organization (1969) Health factor involved in working conditions of heat stress. WHO, Geneva

    Google Scholar 

  69. Zhai LN, Li J (2015) Prediction methods of skin burn for performance evaluation of thermal protective clothing. Burns 41:1385–1396. https://doi.org/10.1016/j.burns.2015.02.019

    Article  Google Scholar 

  70. Ng EYK, Chua LT (2002) Comparison of one- and two-dimensional programmes for predicting the state of skin burns. Burns 28:27–34. https://doi.org/10.1016/S0305-4179(01)00066-3

    Article  Google Scholar 

  71. Jiang SC, Ma N, Li HJ, Zhang XX (2002) Effects of thermal properties and geometrical dimensions on skin burn injuries. Burns 28:713–717. https://doi.org/10.1016/s0305-4179(02)00104-3

    Article  Google Scholar 

  72. Keiser C, Becker C, Rossi RM (2008) Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J 78:604–613. https://doi.org/10.1177/0040517507081309

    Article  Google Scholar 

  73. Fu M, Weng WG, Yuan HY (2014) Numerical simulation of the effects of blood perfusion, water diffusion, and vaporization on the skin temperature and burn injuries. Numer Heat Transf 65:1187–1203. https://doi.org/10.1080/10407782.2013.869449

    Article  Google Scholar 

  74. Fu M, Yuan MQ, Weng WG (2015) Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation. Int J Therm Sci 96:201–210. https://doi.org/10.1016/j.ijthermalsci.2015.05.008

    Article  Google Scholar 

  75. Fu M, Chen WW, Weng WG, Yuan MQ, Luo N, Xu XY (2018) Prediction of thermal skin burn based on the combined mathematical model of the skin and clothing. J Text Inst 109:1606–1612. https://doi.org/10.1080/00405000.2018.1437112

    Article  Google Scholar 

  76. Su Y, Tian M, Li J, Zhang XH (2021) Development of heat and moisture transfer model for predicting skin burn of firefighter in fire environments. J Text Inst 113(8):1658–1665. https://doi.org/10.1080/00405000.2021.1943945

    Article  Google Scholar 

  77. Tian M, Li J (2018) 3D heat transfer modeling and parametric study of a human body wearing thermal protective clothing exposed to flash fire. Fire Mater 42:657–667. https://doi.org/10.1002/fam.2520

    Article  Google Scholar 

  78. Tian M, Li J (2019) A method to predict burn injuries of firefighters considering heterogeneous skin thickness distribution based on instrumented manikin system. Int J Occup Saf Ergon 27:1–45. https://doi.org/10.1080/10803548.2019.1700665

    Article  MathSciNet  Google Scholar 

  79. Ling XH, Guan M, Li J (2015) Evaluation on thermal protective performance of fabric for firefighter protective clothing. J Text Res 36(8):110–115

    Google Scholar 

  80. Wang M, Li XH, Li J, Xu BG (2015) A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure. Text Res J. https://doi.org/10.1177/0040517515595028

    Article  Google Scholar 

  81. Su Y, Li R, Yang J, Song GW, Rui Li (2019) Developing a test device to analyze heat transfer through firefighter protective clothing. Int J Therm Sci 138:1–11. https://doi.org/10.1016/j.ijthermalsci.2018.12.031

    Article  Google Scholar 

  82. Mandal S, Annaheim S, Camenzind M, Rossi RM (2019) Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures. J Ind Text 48(7):1184–1205. https://doi.org/10.1177/1528083718760801

    Article  Google Scholar 

  83. Morel A, Bedek G, Salaün F, Dupont D (2014) A review of heat transfer phenomena and the impact of moisture on firefighters’ clothing and protection. Ergonomics 57(7):1078–1089. https://doi.org/10.1080/00140139.2014.907447

    Article  Google Scholar 

  84. Talukdar P, Torvi D, Simonson CJ, Sawcyn CMJ (2010) Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests. Int J Heat Mass Transf 53:526–539. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.041

    Article  Google Scholar 

  85. Raj U, Talukdar P, Das A, Ramasamy A (2016) Development of correlations and artificial neural network models to predict second-degree burn time for thermal-protective fabrics. J Text Inst 108:1–13. https://doi.org/10.1080/00405000.2016.1163917

    Article  Google Scholar 

  86. Li X, Lu Y, Zhai L, Wang M, Li J, Wang Y (2013) Analyzing thermal shrinkage of fire-protective clothing exposed to flash fire. Fire Technol 51:195–211. https://doi.org/10.1007/s10694-013-0375-0

    Article  Google Scholar 

  87. Tian M, Wang ZL, Li J (2016) 3D numerical simulation of heat transfer through simplified protective clothing during fire exposure by CFD. Int J Heat Mass Transf 93:314–321. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.027

    Article  Google Scholar 

  88. Kim Y, Lee CK, Li P, Corner B, Paquette S (2002) Investigation of air gaps entrapped in protective clothing systems. Fire Mater 26:121–126. https://doi.org/10.1002/fam.790

    Article  Google Scholar 

  89. Lee CK, Kim Y, Wood A (2002) Investigation and correlation of manikin and bench scale fire testing of clothing systems. Fire Mater. https://doi.org/10.1002/fam.808

    Article  Google Scholar 

  90. Xu C, Shen SF, Fu M, Li YY (2020) A prediction method to evaluate thermal performance of protective clothing based on the correlation analysis of the bench scale and flame manikin tests. Int J Cloth Sci Technol. https://doi.org/10.1108/IJCST-02-2019-0017

    Article  Google Scholar 

  91. Udayraj TP, Das A, Alagirusamy R (2016) Heat and mass transfer through thermal protective clothing—a review. Int J Therm Sci 106:32–56. https://doi.org/10.1016/j.ijthermalsci.2016.03.006

    Article  Google Scholar 

  92. GB/T 5454 (1997) Textiles-Burning behaviour-Oxygen index method. China Textile Federation Standardization Institute

  93. ISO 4589 (1984) Plastics; determination of flammability by oxygen index. International Standardization Organization, Geneva

    Google Scholar 

  94. GB/T 14645 (2014) Textiles—burning behavior—the 45° test determination of damaged area and ignition times. China Textile Industry Federation

  95. GB/T 5455 (2014) Textiles—burning behavior—determination of damaged length, afterglow time and afterflame time of vertically oriented specimens. China Textile Industry Federation

  96. ASTM D4108 (1987) Standard test method for thermal protective performance of materials for clothing by open-flame method. American Society for Testing and Materials

  97. NFPA 1971(1986) Standard on protective ensembles for structural fire fighting and proximity fire fighting. National Fire Protection Association

  98. ASTM F2700-2008 (2013) Standard test method for unsteady-state heat transfer evaluation of flame resistant materials for clothing with continuous heating. American Society for Testing and Materials

  99. GB 8965.1-2009 (2009) Protective clothing—flame-retardant protection. China Textile Federation Standardization Institute

  100. ASTM F2703-21 (2021) Standard test method for unsteady-state heat transfer evaluation of flame-resistant materials for clothing with burn injury prediction. American Society for Testing and Materials

  101. ASTM F1939-1999a (1999) Standard test method for radiant protective performance of flame resistant clothing materials. American Society for Testing and Materials

  102. NFPA 1977 (2011) Standard on protective clothing and equipment for wildland fire fighting and urban interface fire fighting. National Fire Protection Association

  103. ASTM F1939-15 (2020) Standard test method for radiant heat resistance of flame resistant clothing materials with continuous heating. American Society for Testing and Materials

  104. ASTM F2702-15 (2015) Standard test method for radiant heat performance of flame resistant clothing materials with burn injury prediction. American Society for Testing and Materials

  105. ASTM F1930-18 (2018) Standard test method for evaluation of flame-resistant clothing for protection against fire simulations using an instrumented manikin. American Society for Testing and Materials

  106. GB/T 23467 (2009) Standard test method for evaluation of flame resistant clothing for protection against flash fire simulations using an instrumented manikin. Emergency Management Department

  107. ISO 13506:2008(en) (2008) Protective clothing against heat and flame—test method for complete garments—prediction of burn injury using an instrumented manikin. International Standardization Organization, Geneva

    Google Scholar 

  108. Woodward AB (2003) Fire scenarios for an improved fabric flammability test. Masters Theses

  109. Gašperin M, Juričič D, Musizza B, Mekjavič I (2008) A model-based approach to the evaluation of flame-protective garments. ISA Trans 47:198–210. https://doi.org/10.1016/j.isatra.2007.12.003

    Article  Google Scholar 

  110. Sipe JE (2004) Development of an instrumented dynamic mannequin test to rate the protection provided by protective clothing (electronic resource). Masters Theses

  111. Rossi RM, Schmid M, Camenzind MA (2014) Thermal energy transfer through heat protective clothing during a flame engulfment test. Text Res J 84:101–110. https://doi.org/10.1177/0040517514521115

    Article  Google Scholar 

  112. Gold A, Burgess WA, Clougherty EV (1978) Exposure of firefighters to toxic air contaminants. Am Ind Hyg Assoc J 39:534–539. https://doi.org/10.1080/0002889778507805

    Article  Google Scholar 

  113. Tu JY, Inthavong K, Ahmadi G (2013) Computational fluid and particle dynamics in the human respiratory system. https://doi.org/10.1007/978-94-007-4488-2?nosfx=y

  114. Weibel ER (1963) Geometry and dimensions of airways of conductive and transitory zones. In: Morphometry of the human lung, vol 31. Elsevier, Inc., pp 110–135. https://doi.org/10.1016/B978-1-4832-0076-7.50015-6

  115. Tian L, Ahmadi G (2016) Transport and deposition of nanofibers in human upper tracheobronchial airways. J Aerosol Sci 91:22–32. https://doi.org/10.1016/j.jaerosci.2015.09.002

    Article  Google Scholar 

  116. Schroeter JD, Garcia GJM, Kimbell JS (2011) Effects of surface smoothness on inertial particle deposition in human nasal models. J Aerosol Sci 42:52–63. https://doi.org/10.1016/j.jaerosci.2010.11.002

    Article  Google Scholar 

  117. Shang YD, Tian L, Fan YM, Dong JL, Inthavong K, Tu JY (2018) Effect of morphology on nanoparticle transport and deposition in human upper tracheobronchial airways. J Comput Multiphase Flows 10:1757482X1875601. https://doi.org/10.1177/1757482X18756012

    Article  MathSciNet  Google Scholar 

  118. Li R, Xu XX, Qiao Y, Zhao XG (2019) Experimental research on the impact of alveolar morphology on deposition of inhalable particles in the human pulmonary acinar area. J Med Biol Eng 39:470–479. https://doi.org/10.1007/s40846-018-0419-5

    Article  Google Scholar 

  119. Xu XY, Ni SJ, Fu M, Zheng X, Luo N, Weng WG (2017) Numerical investigation of airflow, heat transfer and particle deposition for oral breathing in a realistic human upper airway model. J Therm Biol 70:53–63. https://doi.org/10.1016/j.jtherbio.2017.05.003

    Article  Google Scholar 

  120. Duan MJ, Liu L, Da G, Géhin E, Nielsen PV, Weinreich UM, Lin B, Wang Y, Zhang T, Sun W (2020) Measuring the administered dose of particles on the facial mucosa of a realistic human model. Indoor Air 30:108–116. https://doi.org/10.1111/ina.12612

    Article  Google Scholar 

  121. Chen XL, Kleinstreuer C, Zhong WQ, Feng Y, Zhou XG (2018) Effects of thermal airflow and mucus-layer interaction on hygroscopic droplet deposition in a simple mouth-throat model. Aerosol Sci Technol 52:1–42. https://doi.org/10.1080/02786826.2018.1476751

    Article  Google Scholar 

  122. Xu XY, Shang YD, Tian L, Weng WG, Tu JY (2019) Fate of the inhaled smoke particles from fire scenes in the nasal airway of a realistic firefighter: a simulation study. J Occup Environ Hyg 16:273–285. https://doi.org/10.1080/15459624.2019.1572900

    Article  Google Scholar 

  123. Xu XY, Wu JL, Weng WG, Fu M (2020) Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations. Biomech Model Mechanobiol 19:1679–1695. https://doi.org/10.1007/s10237-020-01299-3

    Article  Google Scholar 

  124. Bates AJ, Schuh A, Amine-Eddine G, Mcconnell K, Loew W, Fleck RJ, Woods JC, Dumoulin CL, Amin RS (2019) Assessing the relationship between movement and airflow in the upper airway using computational fluid dynamics with motion determined from magnetic resonance imaging. Clin Biomech 66:88–96. https://doi.org/10.1016/j.clinbiomech.2017.10.011

    Article  Google Scholar 

  125. Chung SK, Kim SK (2008) Digital particle image velocimetry studies of nasal airflow. Respir Physiol Neurobiol 163:111–120. https://doi.org/10.1016/j.resp.2008.07.023

    Article  Google Scholar 

  126. Spence CJT, Buchmann NA, Jermy MC, Moore SM (2010) Stereoscopic PIV measurements of flow in the nasal cavity with high flow therapy. Exp Fluids 50:1005–1017. https://doi.org/10.1007/s00348-010-0984-z

    Article  Google Scholar 

  127. Phuong NL, Ito K (2015) Investigation of flow pattern in upper human airway including oral and nasal inhalation by PIV and CFD. Build Environ 94:504–515. https://doi.org/10.1016/j.buildenv.2015.10.002

    Article  Google Scholar 

  128. Anthony TR, Flynn M, Eisner A (2005) Evaluation of facial features on particle inhalation. Ann Occup Hyg 49:179–193. https://doi.org/10.1093/annhyg/meh082

    Article  Google Scholar 

  129. Kucinschi BR, Scherer RC, Dewitt KJ, Ng TTM (2006) Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. J Biomech Eng 128:380–390. https://doi.org/10.1115/1.2187042

    Article  Google Scholar 

  130. Stapleton KW, Guentsch E, Hoskinson MK, Finlay WH (2000) On the suitability of k–ε turbulence modeling for aerosol deposition in the mouth and throat: a comparison with experiment. J Aerosol Sci 31:739–749. https://doi.org/10.1016/S0021-8502(99)00547-9

    Article  Google Scholar 

  131. Jayaraju ST, Brouns M, Lacor C, Belkassem B, Verbanck S (2008) Large eddy and detached eddy simulations of fluid flow and particle deposition in a human mouth–throat. J Aerosol Sci 39:862–875. https://doi.org/10.1016/j.jaerosci.2008.06.002

    Article  Google Scholar 

  132. Zhang Z, Kleinstreuer C (2011) Laminar-to-turbulent fluid–nanoparticle dynamics simulations: model comparisons and nanoparticle-deposition applications. Int J Numer Methods Biomed Eng 27:1930–1950. https://doi.org/10.1002/cnm.1447

    Article  Google Scholar 

  133. Elcner J, Lizal F, Jedelsky J, Jicha M, Chovancova M (2015) Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results. Biomech Model Mechanobiol 15:447–469. https://doi.org/10.1007/s10237-015-0701-1

    Article  Google Scholar 

  134. You K, Yang H-T, Kym D, Yoon J, Haejunyim C-S, Hur J, Chun W, Kim J-H (2014) Inhalation injury in burn patients: establishing the link between diagnosis and prognosis. Burns 40:1470–1475. https://doi.org/10.1016/j.burns.2014.09.015

    Article  Google Scholar 

  135. Park GY, Park JW, Jeong DH, Jeong SH (2003) Prolonged airway and systemic inflammatory reactions after smoke inhalation*. Chest 123:475–480. https://doi.org/10.1378/chest.123.2.475

    Article  Google Scholar 

  136. Madnani DD, Steele NP, De Vries E (2006) Factors that predict the need for intubation in patients with smoke inhalation injury. Ear Nose Throat J 85:278–280. https://doi.org/10.1177/014556130608500421

    Article  Google Scholar 

  137. Morita N, Enkhbaatar P, Maybauer DM, Maybauer MO, Westphal M, Murakami K, Hawkins HK, Cox RA, Traber LD, Traber DL (2011) Impact of bronchial circulation on bronchial exudates following combined burn and smoke inhalation injury in sheep. Burns 37:465–473. https://doi.org/10.1016/j.burns.2010.11.005

    Article  Google Scholar 

  138. Hamahata A, Enkhbaatar P, Sakurai H, Nozaki M, Traber DL (2010) Sclerosis therapy of bronchial artery attenuates acute lung injury induced by burn and smoke inhalation injury in ovine model. Burns 36:1042–1049. https://doi.org/10.1016/j.burns.2009.05.016

    Article  Google Scholar 

  139. Hogg G, Goswamy J, Khwaja S, Khwaja N (2016) Laryngeal trauma following an inhalation injury: a review and case report. J Voice 31:388.e27-388.e31. https://doi.org/10.1016/j.jvoice.2016.09.017

    Article  Google Scholar 

  140. Rong Y-H, Liu W, Wang C, Ning F-G, Zhang G-A (2011) Temperature distribution in the upper airway after inhalation injury. Burns 37:1187–1191. https://doi.org/10.1016/j.burns.2011.06.004

    Article  Google Scholar 

  141. Vogel S (2009) Nosehouse: heat-conserving ventilators based on nasal counterflow exchangers. Bioinspir Biomim 4:046004. https://doi.org/10.1088/1748-3182/4/4/046004

    Article  Google Scholar 

  142. Dias NH, Martins RHG, Braz JRC, Carvalho LR (2005) Larynx and cervical trachea in humidification and heating of inhaled gases. Ann Otol Rhinol Laryngol 114:411–415. https://doi.org/10.1177/000348940511400514

    Article  Google Scholar 

  143. Zhao R, Di LN, Zhao XZ, Wang C, Zhang GA (2013) Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury. Burns 39:767–775. https://doi.org/10.1016/j.burns.2012.10.024

    Article  Google Scholar 

  144. Zhao R, Di LN, Wen CQ, Ning FG, Zhang GA (2013) Circulational heat dissipation of upper airway: canine model of inhalational thermal injury. Burns 39:1212–1220. https://doi.org/10.1016/j.burns.2013.01.007

    Article  Google Scholar 

  145. Wan JB, Zhang GA, Qiu YX, Wen CQ, Fu TR (2016) Heat dissipation by blood circulation and airway tissue heat absorption in a canine model of inhalational thermal injury. Burns 42:548–555. https://doi.org/10.1016/j.burns.2015.11.002

    Article  Google Scholar 

  146. Chang Y, Zhao XZ, Wang C, Ning FG, Zhang GA (2015) Simulation of the velocity and temperature distribution of inhalation thermal injury in a human upper airway model by application of computational fluid dynamics. J Burn Care Res 36:500–508. https://doi.org/10.1097/bcr.0000000000000181

    Article  Google Scholar 

  147. Phuong NL, Yamashita M, Yoo SJ, Ito K (2016) Prediction of convective heat transfer coefficient of human upper and lower airway surfaces in steady and unsteady breathing conditions. Build Environ 100:172–185. https://doi.org/10.1016/j.buildenv.2016.02.020

    Article  Google Scholar 

  148. Goodarzi-Ardakani V, Taeibi-Rahni M, Salimi MR, Ahmadi G (2016) Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air. Respir Physiol Neurobiol 223:49–58. https://doi.org/10.1016/j.resp.2016.01.001

    Article  Google Scholar 

  149. Farahmand K, Srinivasan R, Hamidi M (2012) CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition. Int J Ind Eng Comput. https://doi.org/10.5267/j.ijiec.2011.08.017

    Article  Google Scholar 

  150. Soni B, Nayak AK (2019) Effect of inspiration cycle and ventilation rate on heat exchange in human respiratory airways. J Therm Biol 84:357–367. https://doi.org/10.1016/j.jtherbio.2019.07.026

    Article  Google Scholar 

  151. Hsu DJ, Swift DL (1999) The measurements of human inhalability of ultralarge aerosols in calm air using mannikins. J Aerosol Sci 30:1331–1343. https://doi.org/10.1016/S0021-8502(99)00022-1

    Article  Google Scholar 

  152. Lin TC, Breysse PN, Laube BL, Swift DL (2001) Mouthpiece diameter affects deposition efficiency in cast models of the human oral airways. J Aerosol Med 14:335–341. https://doi.org/10.1089/089426801316970295

    Article  Google Scholar 

  153. Krüger S, Hofmann A, Berger A, Gude N (2016) Investigation of smoke gases and temperatures during car fire—large-scale and small-scale tests and numerical investigations. Fire Mater 40:785–799. https://doi.org/10.1002/fam.2342

    Article  Google Scholar 

  154. Zamankhan P, Ahmadi G, Wang ZC, Hopke PK, Cheng YH, Su WC, Leonard D (2006) Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Sci Technol 40:463–476. https://doi.org/10.1080/02786820600660903

    Article  Google Scholar 

  155. Zhang Z, Kleinstreuer C (2011) Computational analysis of airflow and nanoparticle deposition in a combined nasal–oral–tracheobronchial airway model. J Aerosol Sci 42:174–194. https://doi.org/10.1016/j.jaerosci.2011.01.001

    Article  Google Scholar 

  156. Chen XL, Ma R, Zhong WQ, Sun BB, Zhou XG (2019) Numerical study of the effects of temperature and humidity on the transport and deposition of hygroscopic aerosols in a G3–G6 airway. Int J Heat Mass Transf 138:545–552. https://doi.org/10.1016/j.ijheatmasstransfer.2019.04.114

    Article  Google Scholar 

  157. Tian L, Ahmadi G (2012) Transport and deposition of micro-and nano-particles in human tracheobronchial tree by an asymmetric multi-level bifurcation model. J Comput Multiphase Flows 4:159–182. https://doi.org/10.1260/1757-482X.4.2.159

    Article  MathSciNet  Google Scholar 

  158. BalásházyI HW, Heistracher T (2003) Local particle deposition patterns may play a key role in the development of lung cancer. J Appl Physiol 94:1719–1725. https://doi.org/10.1152/japplphysiol.00527.2002

    Article  Google Scholar 

  159. Cheng YS, Zhou Y, Chen BT (1999) Particle deposition in a cast of human oral airways. Aerosol Sci Technol 31:286–300. https://doi.org/10.1080/027868299304165

    Article  Google Scholar 

  160. You SM, Yao ZY, Dai YJ, Wang CH (2017) A comparison of PM exposure related to emission hotspots in a hot and humid urban environment: concentrations, compositions, respiratory deposition, and potential health risks. Sci Total Environ 599–600:464–473. https://doi.org/10.1016/j.scitotenv.2017.04.217

    Article  Google Scholar 

  161. Sah D, Verma PK, Kumari KM, Lakhani A (2017) Chemical partitioning of fine particle-bound As, Cd, Cr, Ni Co, Pb and assessment of associated cancer risk due to inhalation, ingestion and dermal exposure. Inhal Toxicol 29:1–11. https://doi.org/10.1080/08958378.2017.1406563

    Article  Google Scholar 

  162. Xu C, Zheng X, Shen SF (2021) A numerical study of the effects of ambient temperature and humidity on the particle growth and deposition in the human airway. Environ Res 200:111751. https://doi.org/10.1016/j.envres.2021.111751

    Article  Google Scholar 

  163. Han ZY, Weng WG, Huang QY (2013) Numerical investigation on the effects of human movements on smoke propagation in building fire. Procedia Eng 62:470–477. https://doi.org/10.1016/j.proeng.2013.08.089

    Article  Google Scholar 

  164. Wu JL, Weng WG, Shen LC, Fu M (2022) Transient and continuous effects of indoor human movement on nanoparticle concentrations in a sitting person’s breathing zone. Sci Total Environ 805:149970. https://doi.org/10.1016/j.scitotenv.2021.149970

    Article  Google Scholar 

  165. Fang ZM, Lv W, Li XL, Song WG (2019) A multi-grid evacuation model considering the threat of fire to human life and its application to building fire risk assessment. Fire Technol 55:2005–2026. https://doi.org/10.1007/s10694-019-00840-w

    Article  Google Scholar 

  166. Pretrel H, Koched A, Audouin L (2015) Doorway flows induced by the combined effects of natural and forced ventilation in case of multi-compartments large-scale fire experiments. Fire Technol 52:489–514. https://doi.org/10.1007/s10694-015-0524-8

    Article  Google Scholar 

  167. Liu C, Zhong MH, Song SY, Xia FY, Tian XL, Yang YX, Long Z (2020) Experimental and numerical study on critical ventilation velocity for confining fire smoke in metro connected tunnel. Tunn Undergr Space Technol 97:103296. https://doi.org/10.1016/j.tust.2020.103296

    Article  Google Scholar 

  168. Svensson S (2001) Experimental study of fire ventilation during fire fighting operations. Fire Technol 37:69–85. https://doi.org/10.1023/A:1011653603104

    Article  Google Scholar 

  169. Foster J, Hodder SG, Lioyd A, Havenith G (2020) Individual responses to heat stress: implications for hyperthermia and physical work capacity. Front Physiol 11:541483. https://doi.org/10.3389/fphys.2020.541483

    Article  Google Scholar 

  170. Fang YS, Chen GR, Bick M, Chen J (2021) Smart textiles for personalized thermoregulation. Chem Soc Rev 50:9357–9374. https://doi.org/10.1039/D1CS00003A

    Article  Google Scholar 

  171. Cao H (2013) Smart technology for personal protective equipment and clothing. Smart Text Prot. https://doi.org/10.1016/B978-0-85709-056-0.50008-X

    Article  Google Scholar 

  172. Ghosh SK, Chakraborty S, Jamthe A, Agrawal DP (2013) Comprehensive monitoring of firefighters by a Wireless Body Area Sensor Network. In: International conference on wireless and optical communications networks, 2013. https://doi.org/10.1109/WOCN.2013.6616245

  173. Mandal S, Camenzind M, Annaheim S, Rossi RM (2019) Firefighters’ protective clothing and equipment: performance, protection, and comfort. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant Nos. 72034004, 52074163), National Science Fund for Distinguished Young Scholars of China (Grant No. 71725006), National Key R&D Program of China (Grant No. 2022YFC3006105), and Anhui Provincial Natural Science Foundation for Distinguished Young Scholars (Grant No. 1908085J22).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguo Weng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, W., Yang, J., Wu, J. et al. Human Thermoregulation and Injury Evaluation in Fire Environments: A Review. Fire Technol 60, 991–1025 (2024). https://doi.org/10.1007/s10694-023-01411-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-023-01411-w

Keywords