[go: up one dir, main page]

Skip to main content
Log in

Joint angle and delay estimation for GNSS multipath signals based on multiple sparse Bayesian Learning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

Multipath signals formed by signal reflection coming from objects in the vicinity of Global Navigation Satellite System (GNSS) receivers result in a degradation of the tracking performance and an increase in the positioning error. By estimating the parameters of both line-of-sight signal and the multipath signals, superior multipath mitigation, spoofing suppression, and localization can be attained. We propose using the multiple sparse Bayesian learning method together with the joint angle and delay estimation technique in GNSS multipath environment to fully exploit the sparsity present in both the spatial and the temporal domains. We also extend the techniques to the estimation of fractional Doppler frequency besides the angle and delay. To counteract the intrinsic drawbacks of sparse representations, two different algorithms based on on-grid and off-grid estimators are proposed to either reduce the complexity or enhance the resolution such that the proposed multipath mitigation approach can be adapted to various GNSS practical situations. Subsequently, a third algorithm with improved resolution is obtained by applying the Space Alternating Generalized Expectation–Maximization algorithm to refine the MSBL-based joint angle and delay estimates. Simulation results indicate that the three proposed algorithms can effectively resolve the GNSS multipath signals and have better performance than existing methods even in severe situations, like the cases of signals with low carrier-to-noise-power-density ratio and spatially and temporally correlated multipath.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Antreich F, Nossek JA, Utschick W (2008) Maximum likelihood delay estimation in a navigation receiver for aeronautical applications. Aerosp Sci Technol 12(3):256–267

    Article  Google Scholar 

  • Antreich F, Nossek JA, Seco-Granados G, Swindlehurst AL (2011) The Extended Invariance Principle for Signal Parameter Estimation in an Unknown Spatial Field. IEEE Trans Signal Process 59(7):3213–3225

    Article  Google Scholar 

  • Avd V, Vanderveen MC, Paulraj AJ (1998) Joint angle and delay estimation using shift-invariance techniques. IEEE Trans Signal Process 46(2):405–418

    Article  Google Scholar 

  • Chang N, Hong X, Wang W, Wang Z Subspace Based Joint Delay and Direction of Arrival Estimation for GNSS Multipath Signals. In, Singapore, 2018. China Satellite Navigation Conference (CSNC) 2018 Proceedings. Springer Singapore, pp 189–199

  • Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. Siam Review 43(1):129–159

    Article  Google Scholar 

  • Chen P, Cao Z, Chen Z, Wang X (2018) Off-grid DOA estimation using sparse bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans Signal Process 67(1):208–220

    Article  Google Scholar 

  • Du L, Yardibi T, Li J, Stoica P (2009) Review of user parameter-free robust adaptive beamforming algorithms. Digital Signal Process 19(4):567–582

    Article  Google Scholar 

  • Fleury BH, Tschudin M, Heddergott R, Dahlhaus D, Pedersen KI (1999) Channel parameter estimation in mobile radio environments using the SAGE algorithm. IEEE J Sel Areas Commun 17(3):434–450

    Article  Google Scholar 

  • Fohlmeister F, Iliopoulos A, Sgammini M, et al (2017) Dual polarization beamforming algorithm for multipath mitigation in GNSS. Signal Processing 138(SEP.):86–97

  • Fortunati S, Grasso R, Gini F, Greco MS, LePage K (2014) Single-snapshot DOA estimation by using compressed sensing. Eurasip Journal on Advances in Signal Processing 2014(120)

  • Gerstoft P, Mecklenbräuker CF, Xenaki A, Nannuru S (2016) Multisnapshot sparse Bayesian learning for DOA. IEEE Signal Process Lett 23(10):1469–1473

    Article  Google Scholar 

  • Hong X, Chang N, Wang W, Yin Q Subspace-based Joint DOA, Delay and DFO Estimation for GNSS Multipath Signals. Proc. ION GNSS 2018, Institute of Navigation, Miami, Florida, USA, September, 3788–3801

  • Irsigler M (2010) Characterization of multipath phase rates in different environments. GPS Solutions 14(4):305–317

    Article  Google Scholar 

  • Jia Q, Wu R, Wang W, Lu D, Wang L, Li J (2017) Multipath interference mitigation in GNSS via WRELAX. GPS Solutions 21(2):487–498

    Article  Google Scholar 

  • Juang JC (2008) Multi-objective approach in GNSS code discriminator design. IEEE Trans Aerosp Electr Sys 44(2):481–492

    Article  Google Scholar 

  • Kalyanaraman SK, Braasch MS, Kelly JM (2006) Code tracking architecture influence on GPS carrier multipath. IEEE Trans Aerosp Electron Syst 42(2):548–561

    Article  Google Scholar 

  • Kos T, Markezic I, Pokrajcic J Effects of multipath reception on GPS positioning performance. In: Proceedings ELMAR-2010, 15–17 Sept. 2010, pp 399–402

  • Li J, Zheng D, Stoica P (1997) Angle and waveform estimation via RELAX. IEEE Trans Aerosp Electron Syst 33(3):1077–1087

    Article  Google Scholar 

  • Maqsood M, Gao S, Brown T, Unwin M Effects of ground plane on the performance of multipath mitigating antennas for GNSS. In: 2010 Loughborough Antennas & Propagation Conference, 8–9 Nov. 2010, pp 241–244

  • Misra P, Enge P (2011) Global Positioning System: signals, measurements and performance. Ganga-Jamuna Press

  • O’Brien AJ (2009) Adaptive antenna arrays for precision GNSS receivers. The Ohio State University, Columbus

    Google Scholar 

  • Pillai SU, Kwon BH (1989) Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Trans Acoust Speech Signal Process 37(1):8–15

    Article  Google Scholar 

  • Roy R, Kailath T (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust Speech Signal Process 37(7):984–995. https://doi.org/10.1109/29.32276

    Article  Google Scholar 

  • Schmidt R (1986) Multiple emitter location and signal parameter estimation. IEEE Trans Antennas Propag 34(3):276–280

    Article  Google Scholar 

  • Seco Granados G (2000) Antenna arrays for multipath and interference mitigation in GNSS receivers. Universitat Politècnica de Catalunya, Barcelona

    Google Scholar 

  • Seco Granados G, Fernández Rubio JA, Fernández Prades C (2005) ML estimator and hybrid beamformer for multipath and interference mitigation in GNSS receivers. IEEE Trans Signal Process 53(3):1194–1208

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc: Ser B (Methodol) 58(1):267–288

    Google Scholar 

  • Tipping ME (2001) Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 1(3):211–244

    Google Scholar 

  • Van Nee RDJ (1992) Multipath Effects on GPS Code Phase Measurements. Navigation 39:177–190

    Article  Google Scholar 

  • Van Nee D, Coenen AJEL (1991) New fast GPS code-acquisition technique using FFT. Electr Lett 27:158–160

    Article  Google Scholar 

  • Vanderveen MC, Papadias CB, Paulraj A (1997) Joint angle and delay estimation (JADE) for multipath signals arriving at an antenna array. IEEE Commun Lett 1(1):12–14

    Article  Google Scholar 

  • Wax M, Kailath T (1985) Detection of signals by information theoretic criteria. IEEE Trans Acoust Speech Signal Process 33(2):387–392

    Article  Google Scholar 

  • Wipf DP, Rao BD (2007) An empirical Bayesian strategy for solving the simultaneous sparse approximation problem. IEEE Transactions on Signao Processing 55(7):3704–3716

    Article  Google Scholar 

  • Xie P, Petovello MG (2014) Measuring GNSS multipath distributions in urban canyon environments. IEEE Trans Instrum Meas 64(2):366–377

    Google Scholar 

  • Yang Z, Xie L, Zhang C (2012) Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Transactions on Signao Processing 61(1):38–43

    Article  Google Scholar 

  • Yardibi T, Li J, Stoica P, Xue M, Baggeroer AB (2010) Source localization and sensing: A nonparametric iterative adaptive approach based on weighted least squares. IEEE Trans Aerosp Electron Syst 46(1):425–443

    Article  Google Scholar 

  • Zhang Z, Rao BD (2011) Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J Sel Top Signal Process 5(5):912–926

    Article  Google Scholar 

  • Zhu H, Leus G, Giannakis GB (2011) Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans Signal Process 59(5):2002–2016

    Article  Google Scholar 

Download references

Acknowledgment

The work of G. Seco-Granados was supported in part by the Research and Development Projects of Spanish Ministry of Science, Innovation, and Universities under Grants TEC2017-89925-R and TEC2017-90808-REDT, and by the ICREA Academia Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We calculate (27) through the following two equalities where the sampling point is omitted for short:

$$\begin{array}{l} \left\| {{\varvec{y}_s} - {\varvec{\Phi} _{{\varvec{\beta} _\tau }}}\varvec{\mu} } \right\|_2^2\\ = \left\| {{\varvec{y}_s} - \left( {\varvec{A} \otimes \varvec{C}} \right)\varvec{\mu} - {\varvec{\Xi} _\tau }{\varvec{\beta} _\tau }} \right\|_2^2\\ = \varvec{\beta} _\tau ^T\varvec{\Xi} _\tau ^H{\varvec{\Xi} _\tau }{\varvec{\beta} _\tau } - 2\Re \left\{ {{{\left( {{\varvec{y}_s} - \left( {\varvec{A} \otimes \varvec{C}} \right)\varvec{\mu} } \right)}^H}{\varvec{\Xi} _\tau }} \right\}{\varvec{\beta} _\tau } + {C_1} \end{array}$$
(41)
$$\begin{array}{l} Tr\left\{ {{\varvec{\Phi} _{{\varvec{\beta} _\tau }}}{{\varvec{\Sigma} }}\varvec{\Phi} _{{\varvec{\beta} _\tau }}^H} \right\}\\ = 2\Re \left\{ {Tr\left\{ {\left( {\varvec{A} \otimes \varvec{C}} \right){{\varvec{\Sigma} }}{{\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right)}^H}} \right\}} \right\}\\ + Tr\left\{ {\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right){{\varvec{\Sigma} }}{{\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right)}^H}} \right\} + {C_2} \end{array}$$
(42)

where \(C_{1}\) and \(C_{2}\) are the parts irrelevant to \(\varvec{\beta }_{\tau }\). Equation (42) can be obtained by the following two parts:

$$\begin{array}{l} \Re \left\{ {Tr\left\{ {\left( {\varvec{A} \otimes \varvec{C}} \right){{\varvec{\Sigma} }}{{\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right)}^H}} \right\}} \right\}\\= \Re \left\{ {Tr\left\{ {\left( {\varvec{A} \otimes \varvec{C}} \right){{\varvec{\Sigma} }}\left[ {{\text{diag}}\left( {{\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}}{\varvec{\beta} _\tau }} \right)\left( {{\varvec{A}^H} \otimes \varvec{B}_\tau ^H} \right)} \right]} \right\}} \right\}\\ = \Re {\left\{ {{\text{diag}}\left( {\left( {{\varvec{A}^H}\varvec{A} \otimes \varvec{B}_\tau ^H\varvec{C}} \right){{\varvec{\Sigma} }}} \right)} \right\}^T}\left( {{\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}}{\varvec{\beta} _\tau }} \right) \end{array}$$
(43)
$$\begin{array}{l} Tr\left\{ {\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right) {{\varvec{\Sigma} }}{{\left( {\varvec{A} \otimes \left( {{\varvec{B}_\tau }{\rm{diag}}\left( {{\varvec{\beta} _\tau }} \right)} \right)} \right)}^H}} \right\}\\ = Tr\left\{ {\left( {\left( {\varvec{A} \otimes {\varvec{B}_\tau }} \right){\rm{diag}}\left( {{\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}}{\varvec{\beta} _\tau }} \right)} \right){{\varvec{\Sigma} }}\left( {{\rm{diag}}\left( {{\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}}{\varvec{\beta} _\tau }} \right)\left( {{\varvec{A}^H} \otimes \varvec{B}_\tau ^H} \right)} \right)} \right\}\\ {\rm{ = }}\varvec{\beta} _\tau ^T\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}^T\left( {{{\varvec{\Sigma} }} \odot {{\left( {\varvec{A} \otimes {\varvec{B}_\tau }} \right)}^H}\left( {\varvec{A} \otimes {\varvec{B}_\tau }} \right)} \right){\varvec{J}_{{N_\theta }{N_\tau } \times {N_\tau }}}{\varvec{\beta} _\tau } \end{array}$$
(44)

Note that \(\varvec{\beta }_{\tau }^{T} \varvec{Q\beta }_{\tau }\) belongs to real domain under the circumstance of a positive semi-definite matrix \({\varvec{Q}}\) and thus leads to a result \(\varvec{\beta }_{\tau }^{T} \varvec{Q\beta }_{\tau } = \Re \left\{ {\varvec{\beta }_{\tau }^{T} \varvec{Q\beta }_{\tau } } \right\} = \varvec{\beta }_{\tau }^{T} \Re \left\{ \varvec{Q} \right\}\varvec{\beta }_{\tau }\) due to the real-valued \(\varvec{\beta }_{\tau }\). Then we have the positive semi-definite matrix \(\varvec{P}_{\tau }\). As for the solution to (31), the derivations can be referred to that of (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, N., Wang, W., Hong, X. et al. Joint angle and delay estimation for GNSS multipath signals based on multiple sparse Bayesian Learning. GPS Solut 25, 64 (2021). https://doi.org/10.1007/s10291-020-01072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-020-01072-0

Keywords