Abstract
The calibration errors on experimental slant total electron content (TEC) determined with global positioning system (GPS) observations is revisited. Instead of the analysis of the calibration errors on the carrier phase leveled to code ionospheric observable, we focus on the accuracy analysis of the undifferenced ambiguity-fixed carrier phase ionospheric observable determined from a global distribution of permanent receivers. The results achieved are: (1) using data from an entire month within the last solar cycle maximum, the undifferenced ambiguity-fixed carrier phase ionospheric observable is found to be over one order of magnitude more accurate than the carrier phase leveled to code ionospheric observable and the raw code ionospheric observable. The observation error of the undifferenced ambiguity-fixed carrier phase ionospheric observable ranges from 0.05 to 0.11 total electron content unit (TECU) while that of the carrier phase leveled to code and the raw code ionospheric observable is from 0.65 to 1.65 and 3.14 to 7.48 TECU, respectively. (2) The time-varying receiver differential code bias (DCB), which presents clear day boundary discontinuity and intra-day variability pattern, contributes the most part of the observation error. This contribution is assessed by the short-term stability of the between-receiver DCB, which ranges from 0.06 to 0.17 TECU in a single day. (3) The remaining part of the observation errors presents a sidereal time cycle pattern, indicating the effects of the multipath. Further, the magnitude of the remaining part implies that the code multipath effects are much reduced. (4) The intra-day variation of the between-receiver DCB of the collocated stations suggests that estimating DCBs as a daily constant can have a mis-modeling error of at least several tenths of 1 TECU.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Banville S, Zhang W, Ghoddousi-Fard R, Langley RB (2012) Ionospheric monitoring using integer-leveled observations. In: Proceedings of ION ITM 2012, Institute of Navigation, Nashville, Tennessee, USA, September 17–21, pp 2692–2701
Bossler JD, Goad CC, Bender PL (1980) Using the global positioning system (GPS) for geodetic positioning. Bull Géodésique 54(4):553–563
Braasch M (1996) Multi-path effects. In: Parkinson BW, Spilker JJ (eds) Global positioning system: theory and applications, vol 1. Progress in astronautics and aeronautics. American Institute of Aeronautics and Astronautics, Reston, pp 547–568
Brunini C, Azpilicueta FJ (2009) Accuracy assessment of the GPS-based slant total electron content. J Geodesy 83(8):773–785
Ciraolo L, Azpilicueta F, Brunini C, Meza A, Radicella S (2007) Calibration errors on experimental slant total electron content (TEC) determined with GPS. J Geodesy 81(2):111–120
Collins P, Lahaye F, Heroux P, Bisnath S (2008) Precise point positioning with ambiguity resolution using the decoupled clock model. In: Proceedings of ION GNSS 2008, Institute of Navigation, Savannah, Georgia, USA, September 16–19, pp 1315–1322
Coster A, Williams J, Weatherwax A, Rideout W, Herne D (2013) Accuracy of GPS total electron content: GPS receiver bias temperature dependence. Radio Sci 48(2):190–196. https://doi.org/10.1002/rds.20011
Dow JM, Neilan RE, Rizos C (2009) The international GNSS service in a changing landscape of global navigation satellite systems. J Geodesy 83(3–4):191–198
Ge M, Gendt M, Rothacher M, Shi C, Liu J (2008) Resolution of GPS carrier phase ambiguities in precise point positioning (PPP) with daily observations. J Geodesy 82(7):389–399
Geng J, Shi C, Ge M, Dodson AH, Lou Y, Zhao Q, Liu J (2012) Improving the estimation of fractional-cycle biases for ambiguity resolution in precise point positioning. J Geodesy 86(8):579–589
Hatch R (1982) The synergism of GPS code and carrier measurements. In: Proceedings of the third international symposium on satellite Doppler positioning, Physical Sciences Laboratory of New Mexico State University, Feb 8–12, pp 1213–1231
Hernández-Pajares M, Juan J, Sanz J, Orus R, Garcia-Rigo A, Feltens J, Komjathy A, Schaer S, Krankowski A (2009) The IGS VTEC maps: a reliable source of ionospheric information since 1998. J Geodesy 83(3–4):263–275
Hernández-Pajares M, Roma Dollase D, Krankowski A, García Rigo A, Orús Pérez R (2016) Comparing performances of seven different global VTEC ionospheric models in the IGS context. In International GNSS service workshop (IGS 2016), Sydney, Australia, February 8–12, pp 1–13
Juan J, Hernández-Pajares M, Sanz J, Ramos-Bosch P, Aragon-Angel A, Orús R, Ochieng W, Feng S, Coutinho P, Samson J, Tossaint M (2012) Enhanced precise point positioning for GNSS Users. IEEE Trans Geosci Remote Sens 50(10):4213–4222
Laurichesse D, Mercier F (2007) Integer Ambiguity resolution on undifferenced GPS phase measurements and its application to PPP. In: Proceedings of ION GNSS 2007, Institute of Navigation, Fort Worth, Texas, USA, September 25–28, pp 839–848
Li M, Yuan Y, Wang N, Liu T, Chen Y (2017) Estimation and analysis of the short-term variations of multi-GNSS receiver differential code biases using global ionosphere maps. J Geodesy. https://doi.org/10.1007/s00190-017-1101-3
Liu T, Yuan Y, Zhang B, Wang N, Tang B, Cheng Y (2017) Multi-GNSS precise point positioning (MGPPP) using raw observations. J Geodesy 91(3):253–268
Liu T, Zhang B, Yuan Y, Li M (2018) Real-time precise point positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling. J Geodesy. https://doi.org/10.1007/s00190-018-1118-2
Manucci AJ, Iijima BA, Lindqwister UJ, Pi X, Sparks L, Wilson BD (1999) GPS and ionosphere. URSI reviews of radio science. Jet Propulsion Laboratory, Pasadena
Melbourne WG (1985) The case for ranging in GPS-based geodetic systems. In: Proceedings of the first international symposium on precise positioning with the Global Positioning System Rockville, Maryland, April 15–19, pp 373–386
Nie W, Xu T, Rovira-Garcia A, Zornoza JM, Subirana JS, González-Casado G, Chen W, Xu G (2018) The impacts of the ionospheric observable and mathematical model on the global ionosphere model. Remote Sens 10(2):169
Rovira-Garcia A, Juan JM, Sanz J, González-Casado G (2015) A world-wide ionospheric model for fast precise point positioning. IEEE Trans Geosci Remote Sens 53(8):4596–4604. https://doi.org/10.1109/TGRS.2015.2402598
Rovira-Garcia A, Juan JM, Sanz J, González-Casado G, Ibáñez-Segura D (2016a) Accuracy of ionospheric models used in GNSS and SBAS: methodology and analysis. J Geodesy 90(3):229–240. https://doi.org/10.1007/s00190-015-0868-3
Rovira-Garcia A, Juan JM, Sanz J, González-Casado G, Bertran E (2016b) Fast precise point positioning: a system to provide corrections for single and multi-frequency Navigation. Navigation 63(3):231–247. https://doi.org/10.1002/navi.148
Sanz J, Juan J, Hernández-Pajares M (2013) GNSS data processing, vol I: fundamentals and algorithms. ESA Communications, Noordwijk (ESTEC TM-23/1, ISBN 978-92-9221-886-7)
Sanz J, Juan JM, Rovira-Garcia A, González-Casado G (2017) GPS differential code biases determination: methodology and analysis. GPS Solut 21(4):1549–1561. https://doi.org/10.1007/s10291-017-0634-5
Sardon E, Zarraoa N (1997) Estimation of total electron content using GPS data: how stable are the differential satellite and receiver instrumental biases? Radio Sci 32(5):1899–1910
Sardon E, Rius A, Zarraoa N (1994) Estimation of the transmitter and receiver differential biases and the ionospheric total electron content from global positioning system observations. Radio Sci 29(3):577–586. https://doi.org/10.1029/94RS00449
Wilson BD, Mannucci AJ (1993) Instrumental biases in ionospheric measurement derived from GPS data. In: Proceedings of ION GPS 1993, Institute of Navigation, Salt Lake City, UT, September 22–24, pp 1343–1351
Wübbena G (1985) Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements. In: Proceedings of the first international symposium on precise positioning with the global positioning system, Rockville, Maryland, April 15–19
Zhang B (2016) Three methods to retrieve slant total electron content measurements from ground-based GPS receivers and performance assessment. Radio Sci 51(7):972–988
Zhang B, Teunissen PJ (2015) Characterization of multi-GNSS between-receiver differential code biases using zero and short baselines. Sci Bull 60(21):1840–1849
Zhang B, Ou J, Yuan Y, Li Z (2012) Extraction of line-of-sight ionospheric observables from GPS data using precise point positioning. Sci China Earth Sci 55(11):1919–1928
Zhang B, Teunissen PJ, Yuan Y (2017) On the short-term temporal variations of GNSS receiver differential phase biases. J Geodesy 91(5):563–572
Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res Solid Earth 102(B3):5005–5017. https://doi.org/10.1029/96JB0
Acknowledgements
The study is funded by National Key Research and Development Program of China (2016YFB0501902), National Natural Science Foundation of China (41574025, 41574013, 41731069), Spanish Ministry of Science and Innovation project (CGL2015-66410-P), The Hong Kong RGC Joint Research Scheme (E-PolyU501/16) and State Key Laboratory of Geo-Information Engineering (SKLGIE2015-M-2-2).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Nie, W., Xu, T., Rovira-Garcia, A. et al. Revisit the calibration errors on experimental slant total electron content (TEC) determined with GPS. GPS Solut 22, 85 (2018). https://doi.org/10.1007/s10291-018-0753-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10291-018-0753-7