Abstract
In this work, we reported the FeS2@C nanocapsules-modified petal-shaped MoS2 nanosheets (MoS2/FeS2@C) peroxidase prepared by arc discharging combined with hydrothermal methods. We thoroughly investigated their peroxidase-like activities in the colorimetric detection of H2O2 and glutathione (GSH). The results indicate that the prepared petal-shaped MoS2/FeS2@C nanocomposites exhibit enhanced peroxidase activity compared to the single-component MoS2 or FeS2@C. The detection ranges and detection limits (LOD) are 1–150 μM and 0.43 μM for H2O2, respectively, while for GSH, they are 0.2–40 μM and 0.14 μM, respectively. The superior peroxidase-like activity of the MoS2/FeS2@C results from the synergy between the MoS2 and FeS2@C. This synergy creates abundant active sites and more substance shuttle channels, which increases the cyclic efficiency among Fe3+/Fe2+ and Mo6+/Mo4+ and improves the yield of hydroxyl radicals. As a result, the MoS2/FeS2@C nanocomposites acquired quick electron transport and improved peroxidase-like catalytic performance. Moreover, the MoS2/FeS2@C nanocomposites exhibit high stability and selectivity, retaining high-activity levels even after 30 days. These make them promising candidates for use in biosensing and catalysis applications.











Similar content being viewed by others
Data availability
The authors confirm that the data supporting the findings of this study are available within the article.
References
T. Chen, Y.H. Min, X. Yang, H. Gong, X.Y. Tian, L. Liu, Y.H. Hou, W.S. Fu, ACS Omega 7, 11135 (2022). https://doi.org/10.1021/acsomega.1c07264
J.J.C. Wu, X.Y. Wang, Q. Wang, Z.P. Lou, S.R. Li, Y.Y. Zhu, L. Qin, H. Wei, Chem. Soc. Rev. 48, 1004 (2019). https://doi.org/10.1039/C8CS00457a
L.Z. Gao, J. Zhuang, L. Nie, J.B. Zhang, Y. Zhang, N. Gu, T.H. Wang, J. Feng, D.L. Yang, S. Perrett, X.Y. Yan, Nat. Nanotechnol. 2, 577 (2007). https://doi.org/10.1038/nnano.2007.260
Y. Liu, Y.L. Qing, L.C. Jing, W.T. Zou, R. Guo, Langmuir 37, 7364 (2021). https://doi.org/10.1021/acs.langmuir.1c00697
X.X. Xi, X. Peng, C.Y. Xiong, D.Y. Shi, J.L. Zhu, W. Wen, X.H. Zhang, S.F. Wang, Microchim. Acta 187, 383 (2020). https://doi.org/10.1007/s00604-020-04373-w
S.Q. Li, L.T. Wang, X.D. Zhang, H.X. Chai, Y.M. Huang, Sens. Actuators B: Chem. 264, 312 (2018). https://doi.org/10.1016/j.snb.2018.03.015
L.T. Wang, S.Q. Li, X.D. Zhang, Y.M. Huang, Talanta 216, 121009 (2020). https://doi.org/10.1016/j.talanta.2020.121009
Z.Z. Wang, K. Dong, Z. Liu, Y. Zhang, Z.W. Chen, H.J. Sun, J.S. Ren, X.G. Qu, Biomaterials 113, 145 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.041
Y.Y. Huang, J.S. Ren, X.G. Qu, Chem. Rev. 119, 4357 (2019). https://doi.org/10.1021/acs.chemrev.8b00672
H. Wei, L.Z. Gao, K.L. Fan, J.W. Liu, J.Y. He, X.G. Qu, S.J. Dong, E.K. Wang, X.Y. Yan, Nano Today 40, 101269 (2021). https://doi.org/10.1016/j.nantod.2021.101269
D.W. Jiang, D.L. Ni, Z.T. Rosenkrans, P. Huang, X.Y. Yan, W.B. Cai, Chem. Soc. Rev. 48, 3683 (2019). https://doi.org/10.1039/C8CS00718G
Y.B. Zhou, B.W. Liu, R.H. Yang, J.W. Liu, Bioconjugate Chem. 28, 2903 (2017). https://doi.org/10.1021/acs.bioconjchem.7b00673
C. Song, W. Ding, W.W. Zhao, H.B. Liu, J. Wang, Y.W. Yao, C. Yao, Biosens. Bioelectron. 151, 111983 (2020). https://doi.org/10.1016/j.bios.2019.111983
X. Huang, Z.D. Nan, Talanta 216, 120995 (2020). https://doi.org/10.1016/j.talanta.2020.120995
A.K. Dutta, S. Das, S. Samanta, P.K. Samanta, B. Adhikary, P. Biswas, Talanta 107, 361 (2013). https://doi.org/10.1016/j.talanta.2013.01.032
L.P. Feng, L.X. Zhang, S. Zhang, X. Chen, P. Li, Y. Gao, S.J. Xie, A.C. Zhang, H. Wang, A.C.S. Appl, Mater. Interfaces 12, 17547 (2020). https://doi.org/10.1021/acsami.0c01789
W.Q. Xia, P. Zhang, W.S. Fu, L.Z. Hu, Y. Wang, Aggregation/dispersion-mediated peroxidase-like activity of MoS2 quantum dots for colorimetric pyrophosphate detection. Chem. Commun. 55, 2039–2042 (2019). https://doi.org/10.1039/c8cc09799b
P. Zhang, W.Q. Xia, P. Deng, Y.H. Min, J. Tan, Y. Wang, W.S. Fu, Colloids Surf. B 206, 111953 (2021). https://doi.org/10.1016/j.colsurfb.2021.111953
P. Borthakur, P.K. Boruah, P. Das, M.R. Das, CuS nanoparticles decorated MoS2 sheets as an efficient nanozyme for selective detection and photocatalytic degradation of hydroquinone in water. New J. Chem. 45, 8714 (2021). https://doi.org/10.1039/D1NJ00856K
J. Zheng, D.D. Song, H. Chen, J.L. Xu, N.S. Alharbi, T. Hayat, M. Zhang, Chin. Chem. Lett. 31, 1109 (2020). https://doi.org/10.1016/j.cclet.2019.09.037
T.R. Lin, L.S. Zhong, L.Q. Guo, F.F. Fu, G.N. Chen, Nanoscale 6, 11856 (2014). https://doi.org/10.1039/c4nr03393k
J. Liu, J.Y. Du, Y. Su, H.M. Zhao, Microchem. J. 149, 104019 (2019). https://doi.org/10.1016/j.microc.2019.104019/
J.Y. Lei, X.F. Lu, G.D. Nie, Z.Q. Jiang, C. Wang, Part. Part. Syst. Charact. 32, 886 (2015). https://doi.org/10.1002/ppsc.201500043
B.L. Li, H.Q. Luo, J.L. Lei, N.B. Li, RSC Adv. 4, 24256 (2014). https://doi.org/10.1039/C4RA01746C
P. Borthakur, P.K. Boruah, M.R. Das, S.B. Artemkina, P.A. Poltarak, V.E. Fedorov, New J. Chem. 42, 16919 (2018). https://doi.org/10.1039/C8NJ03996H
N.R. Nirala, S. Pandey, A. Bansal, V.K. Singh, B. Mukherjee, P.S. Saxena, A. Srivastava, Biosens. Bioelectron. 74, 207 (2015). https://doi.org/10.1016/j.bios.2015.06.043
P. Singh, R.P. Ojha, S. Kumar, A.K. Singh, R. Prakash, Fe-doped MoS2 nanomaterials with amplified peroxidase mimetic activity for the colorimetric detection of glutathione in human serum. Mater. Chem. Phys. 267, 124684 (2021). https://doi.org/10.1016/j.matchemphys.2021.124684
S. Balendhran, J.Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, E. Kats, S. Bhargava, S. Zhuiykovd, K. Kalantar-zadeh, Nanoscale 4, 461 (2012). https://doi.org/10.1039/C1NR10803D
B.L. Li, H.L. Zou, L. Lu, Y. Yang, J.L. Lei, H.Q. Luo, N.B. Li, Adv. Funct. Mater. 25, 3541 (2015). https://doi.org/10.1002/adfm.201500180
Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li, T.W. Lin, Adv. Mater. 24, 2320 (2012). https://doi.org/10.1002/adma.201104798
Y.R. Wang, Y.B. Xie, J. Alloys Compd. 824, 153936 (2020). https://doi.org/10.1016/j.jallcom.2020.153936
L.S. Xing, X. Li, Z.C. Wu, X.F. Yu, J.W. Liu, L. Wang, C.Y. Cai, W.B. You, G.Y. Chen, J.J. Ding, R.C. Che, Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
C. Zhao, G.M. Shi, F.N. Shi, X.L. Wang, S.T. Li, Colloids Surf. A 642, 128612 (2022). https://doi.org/10.1016/j.colsurfa.2022.128612
A. Hua, Y. Li, W.Y. Zhou, S.Z. Li, R.F. Cheng, J.X. Yang, J. Luan, X.H. Wang, C.H. Jiang, D. Li, S. Ma, W. Liu, Z.D. Zhang, J. Alloys Compd. 895, 162668 (2022). https://doi.org/10.1016/j.jallcom.2021.162668
N. Wang, W.Q. Li, Y.D. Ren, J.Z. Duan, X.F. Zhai, F. Guan, L.F. Wang, B.R. Hou, Colloids Surf. A 608, 125592 (2021). https://doi.org/10.1016/j.colsurfa.2020.125592
Y. Jia, L.Z. Zhang, A.J. Du, G.P. Gao, J. Chen, X.C. Yan, C.L. Brown, X.D. Yao, Adv. Mater. 28, 9532 (2016). https://doi.org/10.1002/adma.201602912
C. Vort, B.M. Weckhuysen, Nat. Rev. Chem. 6, 89 (2022). https://doi.org/10.1038/s41570-021-00340-y
Q. Liu, Q.Q. Sun, W. Gao, J.S. Shen, Y.M. Zhang, G. Lu, Y.L. Chen, S.R. Yu, X.Y. Li, Chem. Eng. J. 441, 136070 (2022). https://doi.org/10.1016/j.cej.2022.136070
J.B. Xu, Y.Y. Xing, Y.T. Liu, M.Z. Liu, X.H. Hou, Anal. Chim. Acta 1179, 338825 (2021). https://doi.org/10.1016/j.aca.2021.338825
X. Zhang, C.Y. Wang, Y.F. Gao, Microchim. Acta 187, 111 (2020). https://doi.org/10.1007/s00604-019-4078-1
S.T. Li, G.M. Shi, J.S. Liang, X.L. Dong, F.N. Shi, L.M. Yang, S.H. Lv, Nanotechnology 31, 065701 (2020). https://doi.org/10.1088/1361-6528/ab4dc9
X. Pan, Y. Liu, X.Z. Wang, Z.B. Zhao, J.S. Qiu, New Carbon Mater. 33, 544 (2018). https://doi.org/10.1016/S1872-5805(18)60356-7
M.X. Dong, Z.X. Wang, X.H. Li, H.J. Guo, J.X. Wang, G.C. Yan, Chem. Eng. Sci. 221, 115709 (2020). https://doi.org/10.1016/j.ces.2020.115709
X.H. Deng, Y. Yang, Y.Q. Mei, J.Q. Li, C.L. Guo, T.J. Yao, Y.M. Guo, B.F. Xin, J. Wu, J. Alloys Compd. 901, 163437 (2022). https://doi.org/10.1016/j.jallcom.2021.163437
C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in Handbook of X-ray Photoelectron Spectroscopy. ed. by G.E. Muilenberg (Perkin-Elmer Corporation, Physical Electronics Division, 1979)
F.L. Zhang, J.X. Liu, H.R. Yue, G.J. Cheng, X.X. Xue, Vacuum 192, 110433 (2021). https://doi.org/10.1016/j.vacuum.2021.110433
S.T. Li, G.M. Shi, Y.S. Wu, L.J. Chen, X.K. Bao, D. Yu, Colloids Surf. A 671, 131659 (2023). https://doi.org/10.1016/j.colsurfa.2023.131659
Y. Shu, T.K. Zhao, Y.T. Li, L. Yang, X.H. Li, G.Y. Feng, W.Y. Jia, F. Luo, Appl. Surf. Sci. 626, 157223 (2023). https://doi.org/10.1016/j.apsusc.2023.157223
K. Czyzewska, A. Trusek-Holownia, M. Dabrowa, F. Sarmiento, J.M. Blamey, Catal. Today 331, 30 (2019). https://doi.org/10.1016/j.cattod.2017.11.025
J.J. Zhou, J. Huang, Y. Xia, H. Ou, Z.J. Li, Sci. Total. Environ. 699, 134342 (2020). https://doi.org/10.1016/j.scitotenv.2019.134342
W. Cao, P. Ju, Z. Wang, Y. Zhang, X.F. Zhai, F.G. Jiang, C.J. Sun, Spectrochim Acta A 239, 118499 (2020). https://doi.org/10.1016/j.saa.2020.118499
S.W. Kwon, S.H. Choi, Y.J. Kim, I.T. Yoon, W.C. Yang, Thin Solid Films 660, 766 (2018). https://doi.org/10.1016/j.tsf.2018.03.078
H.G. Yang, R.T. Yang, P. Zhang, Y.M. Qin, T. Chen, F.G. Ye, Microchim. Acta 184, 4629 (2017). https://doi.org/10.1007/s00604-017-2509-4
Q.G. Chen, T.R. Lin, J.L. Huang, Y. Chen, L.Q. Guo, F.F. Fu, Anal. Methods 10, 504 (2018). https://doi.org/10.1039/C7AY02819A
X.H. Qi, H.M. Tian, X.M. Dang, Y.F. Fan, Y.B. Zhang, H.M. Zhao, Anal. Methods 11, 1111 (2019). https://doi.org/10.1039/C8AY02514B
W.T. Yao, H.Z. Zhu, W.G. Li, H.B. Yao, Y.C. Wu, S.H. Yu, ChemPlusChem 78, 723 (2013). https://doi.org/10.1002/cplu.201300075
Y.N. Ding, H. Liu, L.N. Gao, M. Fu, X.L. Luo, X. Zhang, X.X. Zhang, Q.Y. Liu, R.C. Zeng, J. Alloys Compd. 785, 1189 (2019). https://doi.org/10.1016/j.jallcom.2019.01.225
W.H. Di, X. Zhang, W.P. Qin, Appl. Surf. Sci. 400, 200 (2017). https://doi.org/10.1016/j.apsusc.2016.12.204
L.J. Chen, X. Li, Z.Z. Li, K.J. Liu, J.P. Xie, RSC Adv. 12, 595 (2022). https://doi.org/10.1039/D1RA07601A
J. Liu, L.G. Meng, Z.F. Fei, P.J. Dyson, X.N. Jing, X. Liu, Biosens. Bioelectron. 90, 69 (2017). https://doi.org/10.1016/j.bios.2016.11.046
M. Shamsipur, A. Safavi, Z. Mohammadpour, Sensor. Actuat B-Chem. 199, 463 (2014). https://doi.org/10.1016/j.snb.2014.04.006
J.Y. Feng, P.C. Huang, S.Z. Shi, K.Y. Deng, F.Y. Wu, Anal. Chim. Acta 967, 64 (2017). https://doi.org/10.1016/j.aca.2017.02.025
Acknowledgements
This study was supported by the Province Nature Science Foundation of Liaoning Province (20180550564), and the National Natural Science Foundation of China (51601120).
Author information
Authors and Affiliations
Contributions
Professor Gui-Mei Shi: conceptualization, methodology, data curation, validation, formal analysis, writing—review and editing, resources, supervision. Xin Lv: investigation, data curation, visualization, formal analysis, writing—original draft, writing—review and editing. Chen Zhao: data curation, formal analysis, investigation. Professor Xiao-Lei Wang: formal analysis, resources. Miss Xiu-Kun Bao: visualization, formal analysis. Miss Di Yu: data curation, formal analysis.
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interests regarding the publication of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shi, GM., Lv, X., Zhao, C. et al. Petal-shaped MoS2/FeS2@C nanocomposites with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glutathione. Appl. Phys. A 130, 198 (2024). https://doi.org/10.1007/s00339-024-07325-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-024-07325-w