[go: up one dir, main page]

Skip to main content
Log in

Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

The existence and decay properties of dark solitons for a large class of nonlinear nonlocal Gross–Pitaevskii equations with nonzero boundary conditions in dimension one has been established recently (de Laire and López-Martínez in Commun Partial Differ Equ 47(9):1732–1794, 2022). Mathematically, these solitons correspond to minimizers of the energy at fixed momentum and are orbitally stable. This paper provides a numerical method to compute approximations of such solitons for these types of equations, and provides actual numerical experiments for several types of physically relevant nonlocal potentials. These simulations allow us to obtain a variety of dark solitons, and to comment on their shapes in terms of the parameters of the nonlocal potential. In particular, they suggest that, given the dispersion relation, the speed of sound and the Landau speed are important values to understand the properties of these dark solitons. They also allow us to test the necessity of some sufficient conditions in the theoretical result proving existence of the dark solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Abid, M., Huepe, C., Metens, S., Nore, C., Pham, C., Tuckerman, L., Brachet, M.: Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence. Fluid Dyn. Res. 33(5), 509–544 (2003). Collection of Papers written by Regional Editors

  • Aftalion, A., Blanc, X., Jerrard, R.L.: Mathematical issues in the modelling of supersolids. Nonlinearity 22(7), 1589–1614 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Barenghi, C.F., Donnelly, R.J., Vinen, W.: Quantized Vortex Dynamics and Superfluid Turbulence, vol. 571. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  • Becker, C., Stellmer, S., Soltan-Panahi, P., Dörscher, S., Baumert, M., Richter, E.-M., Kronjäger, J., Bongs, K., Sengstock, K.: Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates. Nat. Phys. 4(6), 496–501 (2008)

    Article  CAS  Google Scholar 

  • Bellazzini, J., Ruiz, D.: Finite energy traveling waves for the Gross–Pitaevskii equation in the subsonic regime. Am. J. Math. 145(1), 109–149 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  • Berloff, N.G.: Quantum vortices, travelling coherent structures and superfluid turbulence. In: Stationary and Time Dependent Gross–Pitaevskii Equations, volume 473 of Contemp. Math., pp. 27–54. Amer. Math. Soc., Providence, RI (2008)

  • Berloff, N.G., Roberts, P.H.: Motions in a Bose condensate VI. Vortices in a nonlocal model. J. Phys. A 32(30), 5611–5625 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Béthuel, F., Gravejat, P., Saut, J.-C.: Existence and properties of travelling waves for the Gross–Pitaevskii equation. In: Stationary and Time Dependent Gross–Pitaevskii Equations, volume 473 of Contemp. Math., pp. 55–103. Amer. Math. Soc., Providence, RI (2008)

  • Béthuel, F., Gravejat, P., Saut, J.-C., Smets, D.: Orbital stability of the black soliton for the Gross–Pitaevskii equation. Indiana Univ. Math. J. 57(6), 2611–2642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Bethuel, F., Gravejat, P., Smets, D.: Asymptotic stability in the energy space for dark solitons of the Gross–Pitaevskii equation. Ann. Sci. Éc. Norm. Supér. (4) 48(6), 1327–1381 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)

    Article  ADS  MATH  Google Scholar 

  • Chiron, D.: Stability and instability for subsonic traveling waves of the nonlinear Schrödinger equation in dimension one. Anal. PDE 6(6), 1327–1420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • de Laire, A.: Global well-posedness for a nonlocal Gross–Pitaevskii equation with non-zero condition at infinity. Commun. Partial Differ. Equ. 35(11), 2021–2058 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • de Laire, A., López-Martínez, S.: Existence and decay of traveling waves for the nonlocal Gross–Pitaevskii equation. Commun. Partial Differ. Equ. 47(9), 1732–1794 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  • de Laire, A., Mennuni, P.: Traveling waves for some nonlocal 1D Gross–Pitaevskii equations with nonzero conditions at infinity. Discrete Contin. Dyn. Syst. 40(1), 635–682 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Frantzeskakis, D.J.: Dark solitons in atomic Bose–Einstein condensates: from theory to experiments. J. Phys. A: Math. Theor. 43(21), 213001 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Grillakis, M., Shatah, J., Strauss, W.: Stability theory of solitary waves in the presence of symmetry. I. J. Funct. Anal. 74(1), 160–197 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  • Kong, Q., Wang, Q., Bang, O., Krolikowski, W.: Analytical theory of dark nonlocal solitons. Opt. Lett. 35(13), 2152–2154 (2010)

    Article  ADS  PubMed  MATH  Google Scholar 

  • Królikowski, W., Bang, O.: Solitons in nonlocal nonlinear media: exact solutions. Phys. Rev. E 63(1), 016610 (2000)

    Article  ADS  MATH  Google Scholar 

  • Lin, Z.: Stability and instability of traveling solitonic bubbles. Adv. Differ. Equ. 7(8), 897–918 (2002)

    MathSciNet  MATH  Google Scholar 

  • Lopez-Aguayo, S., Desyatnikov, A.S., Kivshar, Y.S., Skupin, S., Krolikowski, W., Bang, O.: Stable rotating dipole solitons in nonlocal optical media. Opt. Lett. 31(8), 1100–1102 (2006)

    Article  ADS  PubMed  MATH  Google Scholar 

  • Nikolov, N.I., Neshev, D., Królikowski, W., Bang, O., Rasmussen, J.J., Christiansen, P.L.: Attraction of nonlocal dark optical solitons. Opt. Lett. 29(3), 286–288 (2004)

    Article  ADS  PubMed  MATH  Google Scholar 

  • Reneuve, J., Salort, J., Chevillard, L.: Structure, dynamics, and reconnection of vortices in a nonlocal model of superfluids. Phys. Rev. Fluids 3(11), 114602 (2018)

    Article  ADS  MATH  Google Scholar 

  • Roberts, P.H., Berloff, N.G.: The nonlinear Schrödinger equation as a model of superfluidity. In: Barenghi, C.F., Donnelly, R.J., Vinen, W.F. (eds.) Quantized Vortex Dynamics and Superfluid Turbulence. Lecture Notes in Physics, vol. 571. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45542-6_23

    Chapter  MATH  Google Scholar 

  • Veksler, H., Fishman, S., Ketterle, W.: Simple model for interactions and corrections to the Gross–Pitaevskii equation. Phys. Rev. A 90(2), 023620 (2014)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Labex CEMPI (ANR-11-LABX-0007-01). A. de Laire was also supported by the ANR project ODA (ANR-18-CE40-0020-01). S. López-Martínez was supported by the Madrid Government (Comunidad de Madrid - Spain) under the multiannual Agreement with UAM in the line for the Excellence of the University Research Staff in the context of the V PRICIT (Regional Program of Research and Technological Innovation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Dujardin.

Additional information

Communicated by Anthony Bloch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Theorem 2

Let \(m=\inf _{\xi \in {{\mathbb {R}}}}({\widehat{{\mathcal {W}}}}(\xi )^-)\), where \(s^-=\min \{s,0\}\), and let \(R=\sqrt{2(\sigma -m)}\). For any \(\tilde{\sigma }\in (0,\sigma )\), we choose \(k=(\tilde{\sigma }-m)/R^2=(\tilde{\sigma }-m)/(2(\sigma -m))\). Clearly, \(k\in (0,1/2)\).

On the one hand, for a.e. \(|\xi |\ge R\), one trivially has

$$\begin{aligned} {\widehat{{\mathcal {W}}}}(\xi )\ge m={\tilde{\sigma }} - kR^2\ge {\tilde{\sigma }}-k\xi ^2. \end{aligned}$$

On the other hand, observe that \(\sigma -\xi ^2/2\ge {\tilde{\sigma }}-k\xi ^2\) if, and only if, \(|\xi |\le R\). Therefore, for a.e. \(|\xi |\le R\), we get

$$\begin{aligned} {\widehat{{\mathcal {W}}}}(\xi )\ge \sigma -\frac{\xi ^2}{2}\ge {\tilde{\sigma }}-k\xi ^2. \end{aligned}$$

We may now apply Theorem 1.1 in de Laire and López-Martínez (2022) and get a solution to \((TW _c)\) for a.e. \(c\in (0,\sqrt{2{\tilde{\sigma }}})\). Taking \({\tilde{\sigma }}\) arbitrarily close to \(\sigma \) we obtain a solution for a.e. \(c\in (0,\sqrt{2\sigma })\), which completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Laire, A., Dujardin, G. & López-Martínez, S. Numerical Computation of Dark Solitons of a Nonlocal Nonlinear Schrödinger Equation. J Nonlinear Sci 34, 23 (2024). https://doi.org/10.1007/s00332-023-10001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00332-023-10001-7

Keywords

Mathematics Subject Classification