[go: up one dir, main page]

Skip to main content
Log in

Traveling waves in non-local pulse-coupled networks

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Traveling phase waves are commonly observed in recordings of the cerebral cortex and are believed to organize behavior across different areas of the brain. We use this as motivation to analyze a one-dimensional network of phase oscillators that are nonlocally coupled via the phase response curve (PRC) and the Dirac delta function. Existence of waves is proven and the dispersion relation is computed. Using the theory of distributions enables us to write and solve an associated stability problem. First and second order perturbation theory is applied to get analytic insight and we show that long waves are stable while short waves are unstable. We apply the results to PRCs that come from mitral neurons. We extend the results to smooth pulse-like coupling by reducing the nonlocal equation to a local one and solving the associated boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ariaratnam JT, Strogatz SH (2001) Phase diagram for the winfree model of coupled nonlinear oscillators. Phys Rev Lett 86(19):4278

    Article  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22(19):8691–8704

    Article  Google Scholar 

  • Bick C, Goodfellow M, Laing CR, Martens EA (2020) Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: a review. J Math Neurosci 10(1):1–43

    Article  MathSciNet  Google Scholar 

  • Bressloff P, Coombes S (1998) Traveling waves in a chain of pulse-coupled oscillators. Phys Rev Lett 80(21):4815

    Article  Google Scholar 

  • Bressloff P, Coombes S, De Souza B (1997) Dynamics of a ring of pulse-coupled oscillators: Group-theoretic approach. Phys Rev Lett 79(15):2791

    Article  Google Scholar 

  • Bressloff PC (2014) Waves in neural media, Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, New York

    Google Scholar 

  • Burton SD, Ermentrout GB, Urban NN (2012) Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. J Neurophysiol 108(8):2115–2133

    Article  Google Scholar 

  • Chen X, Ermentrout B (2017) Traveling pulses in a nonlocal equation arising near a saddle-node infinite cycle bifurcation. SIAM J Appl Math 77(4):1204–1229

    Article  MathSciNet  Google Scholar 

  • Coombes S (2005) Waves, bumps, and patterns in neural field theories. Biol Cybern 93(2):91–108

    Article  MathSciNet  Google Scholar 

  • Dror R, Canavier CC, Butera RJ, Clark JW, Byrne JH (1999) A mathematical criterion based on phase response curves for stability in a ring of coupled oscillators. Biol Cybern 80(1):11–23

    Article  Google Scholar 

  • Ermentrout B, van der Ventel B (2016) Rotating waves in simple scalar excitable media: approximations and numerical solutions. J Math Biol 73(6–7):1321–1351

    Article  MathSciNet  Google Scholar 

  • Ermentrout B, Park Y, Wilson D (2019) Recent advances in coupled oscillator theory. Philos Trans R Soc A 377(2160):20190092

    Article  MathSciNet  Google Scholar 

  • Ermentrout G (1985) The behavior of rings of coupled oscillators. J Math Biol 23(1):55–74

    Article  MathSciNet  Google Scholar 

  • Ermentrout GB, Terman DH (2010) Mathematical foundations of neuroscience, vol 35. Springer, Berlin

  • Faye G (2013) Existence and stability of traveling pulses in a neural field equation with synaptic depression. SIAM J Appl Dyn Syst 12(4):2032–2067

    Article  MathSciNet  Google Scholar 

  • Faye G, Scheel A (2015) Existence of pulses in excitable media with nonlocal coupling. Adv Math 270:400–456

    Article  MathSciNet  Google Scholar 

  • Goel P, Ermentrout B (2002) Synchrony, stability, and firing patterns in pulse-coupled oscillators. Physica D 163(3–4):191–216

    Article  MathSciNet  Google Scholar 

  • Goulet J, Ermentrout GB (2011) The mechanisms for compression and reflection of cortical waves. Biol Cybern 105(3–4):253–268

    Article  MathSciNet  Google Scholar 

  • Halgren M, Ulbert I, Bastuji H, Fabó D, Erőss L, Rey M, Devinsky O, Doyle WK, Mak-McCully R, Halgren E et al (2019) The generation and propagation of the human alpha rhythm. Proc Nat Acad Sci 116(47):23772–23782

    Article  Google Scholar 

  • Heitmann S, Ermentrout GB (2015) Synchrony, waves and ripple in spatially coupled kuramoto oscillators with mexican hat connectivity. Biol Cybern 109(3):333–347

    Article  MathSciNet  Google Scholar 

  • Huang X, Troy WC, Yang Q, Ma H, Laing CR, Schiff SJ, Wu JY (2004) Spiral waves in disinhibited mammalian neocortex. J Neurosci 24(44):9897–9902

    Article  Google Scholar 

  • Huang X, Xu W, Liang J, Takagaki K, Gao X, Jy Wu (2010) Spiral wave dynamics in neocortex. Neuron 68(5):978–990

    Article  Google Scholar 

  • Keener JP (2019) Principles of applied mathematics: transformation and approximation. CRC Press, Amsterdam

    Book  Google Scholar 

  • Kuramoto Y (2003) Chemical oscillations, waves, and turbulence. Dover Books, Amsterdam

  • Laing CR (2014) Derivation of a neural field model from a network of theta neurons. Phys Rev E 90(1):010901

    Article  Google Scholar 

  • Laing CR (2016) Travelling waves in arrays of delay-coupled phase oscillators. Chaos Interdiscip J Nonlinear Sci 26(9):094802

    Article  MathSciNet  Google Scholar 

  • León I, Pazó D (2019) Phase reduction beyond the first order: The case of the mean-field complex ginzburg-landau equation. Phys Rev E 100(1):012211

    Article  MathSciNet  Google Scholar 

  • Luke TB, Barreto E, So P (2013) Complete classification of the macroscopic behavior of a heterogeneous network of theta neurons. Neural Comput 25(12):3207–3234

    Article  MathSciNet  Google Scholar 

  • Monga B, Wilson D, Matchen T, Moehlis J (2019) Phase reduction and phase-based optimal control for biological systems: a tutorial. Biol Cybern 113(1–2):11–46

    Article  MathSciNet  Google Scholar 

  • Muller L, Piantoni G, Koller D, Cash SS, Halgren E, Sejnowski TJ (2016) Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night. Elife 5:e17267

    Article  Google Scholar 

  • Muller L, Chavane F, Reynolds J, Sejnowski TJ (2018) Cortical travelling waves: mechanisms and computational principles. Nat Rev Neurosci 19(5):255

    Article  Google Scholar 

  • Nakao H (2016) Phase reduction approach to synchronisation of nonlinear oscillators. Contemp Phys 57(2):188–214

    Article  Google Scholar 

  • Pietras B, Daffertshofer A (2019) Network dynamics of coupled oscillators and phase reduction techniques. Phys Rep 819:1–105

    Article  MathSciNet  Google Scholar 

  • Pinto DJ, Ermentrout GB (2001) Spatially structured activity in synaptically coupled neuronal networks: I. traveling fronts and pulses. SIAM J Appl Math 62(1):206–225

    Article  MathSciNet  Google Scholar 

  • Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB, Woolrich MW, Breakspear M (2019) Metastable brain waves. Nat Commun 10(1):1–17

    Article  Google Scholar 

  • Schwemmer MA, Lewis TJ (2012) The theory of weakly coupled oscillators. In: Phase response curves in neuroscience, Springer, pp 3–31

  • Wilson D, Ermentrout B (2019) Augmented phase reduction of (not so) weakly perturbed coupled oscillators. SIAM Rev 61(2):277–315

    Article  MathSciNet  Google Scholar 

  • Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16(1):15–42

    Article  Google Scholar 

  • Wolfrum M, Gurevich SV, Omel’chenko OE (2016) Turbulence in the ott-antonsen equation for arrays of coupled phase oscillators. Nonlinearity 29(2):257

    Article  MathSciNet  Google Scholar 

  • Zhang H, Watrous AJ, Patel A, Jacobs J (2018) Theta and alpha oscillations are traveling waves in the human neocortex. Neuron 98(6):1269–1281

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation Grants, DMS1712922, DMS1951099.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bard Ermentrout.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Ermentrout, B. Traveling waves in non-local pulse-coupled networks. J. Math. Biol. 82, 18 (2021). https://doi.org/10.1007/s00285-021-01572-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-021-01572-8

Keywords

Mathematics Subject Classification