[go: up one dir, main page]

Skip to main content
Log in

Heat transport properties of feldspathoids and ANA zeolites as a function of temperature

  • Research Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The phonon component of thermal diffusivity (D) was measured up to temperatures (T) of ~1350 K using laser-flash analysis from leucite, analcime, pollucite, nepheline, sodalite, and petalite, many of which were single crystals. From electron microprobe analysis, nepheline is a solid solution, Na2(Na1.2K0.71)Al3.88Si4.10O16, whereas the other minerals have nearly endmember chemical compositions. From near-IR spectra, hydroxyl contents range from ~200 ppm to 1 wt%. At 298 K, D is low (0.51–0.75 mm2 s−1) for the zeolites and the solid-solution nepheline but moderate (1.9–2.2 mm2 s−1) for the endmember feldspathoids. For leucite, D decreases with increasing T until reaching the tetragonal to cubic phase transition whereupon D increases. A complex polynomial is required to describe D(T) for leucite, due to the displacive transition. For the other samples, as observed for most minerals, D decreases up to dehydration which terminated the runs and is described by FT −G + HT where G varies from 0.14 to 1.44 and H is negligible to 0.0006 K−1. Available heat capacity and volumetric data were used to calculate thermal conductivity as a function of T. For sodalite and petalite, k decreases with T, whereas for the remaining phases, k is roughly constant and low, ~1.5 Wm−1 K−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Annersten H, Hassib A (1979) Blue sodalite. Can Mineral 17:39–46

    Google Scholar 

  • Armbruster T, Gunter ME (2001) Crystal structures of natural zeolites. Rev Mineral Geochem 45:1–57

    Article  Google Scholar 

  • Balassone G, Beran A, Fameli G, Amalfitano C, Petti C (2006) The hydrous component in leucite from Somma-Vesuvius and Roccamonfina volcanoes (southern Italy)—a FTIR spectroscopic investigation. Neues Jahrbuch für Mineralogie Abhandlungen 182:149–156

    Article  Google Scholar 

  • Bellatreccia F, Ventura GD, Piccinni M, Cavallo A, Brilli M (2009) H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study. Mineral Mag 73:399–413

    Article  Google Scholar 

  • Bellatreccia F, Ventura GD, Gatta GD, Guidi MC, Harley S (2012) Carbon Dioxide in pollucite, a feldspathoid with the ideal composition (CS, Na)16Al16Si32O96·nH2O. Mineral Mag 76:903–911

    Article  Google Scholar 

  • Bennington KO, Stuve JM, Ferrante MJ (1980) Thermodynamic properties of petalite (Li2Al2Si8O20). U.S. Bureau of Mines Report of Investigations, Washington, DC 8451

    Google Scholar 

  • Beran A, Rossman R (1989) The water content of nepheline. Mineral Petrol 40:235–240

    Article  Google Scholar 

  • Blumm J, Lemarchand S (2002) Influence of test conditions on the accuracy of laser flash measurements. High Temp High Press 34:523–528

    Article  Google Scholar 

  • Blumm J, Opfermann J (2002) Improvement of the mathematical modeling of flash measurements. High Temp High Press 34:515–521

    Article  Google Scholar 

  • Branlund JM, Hofmeister AM (2007) Thermal diffusivity of quartz to 1000 degrees C: effects of impurities and the α-β phase transition. Phys Chem Mineral 34:581–595

    Article  Google Scholar 

  • Branlund JM, Hofmeister AM (2012) Heat transfer in plagioclase feldspars. Am Mineral 97:1145–1154

    Article  Google Scholar 

  • Cahill D, Watson SK, Pohl RO (1992) Lower limit of thermal conductivity of disordered solids. Phys Rev B 46:6131–6140

    Article  Google Scholar 

  • Černý P, London D (1983) Crystal chemistry and stability of petalite. Tschermaks Mineralogische und Petrographische Mitteilungen 31:81–96

    Article  Google Scholar 

  • Cruciani G, Gualtieri A (1999) Dehydration dynamics of analcime by in situ synchrotron powder diffraction. Am Mineral 84:112–119

    Google Scholar 

  • de Ligny D, Richet P, Westrum EF Jr, Roux J (2002) Heat capacity and entropy of rutile (TiO2) and nepheline (NaAlSiO4). Phys Chem Mineral 29:267–272

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1978) An introduction to the rock-forming minerals. Longman, London

    Google Scholar 

  • Effenberger H (1980) Petalit, LiAlSi4O10: verfeinerung der Kristallstruktur, Diskussion der Raumgruppe and Infrarot-Messung. Tschermaks Mineralogische und Petrographische Mitteilungen 27:129–142

    Article  Google Scholar 

  • Gatta GD, Lee Y (2014) Zeolites at high pressure: a review. Mineral Mag 78:267–291

    Article  Google Scholar 

  • Gatta GD, Rinaldi R, McIntyre GJ, Nénert G, Bellatreccia F, Guastoni A, Ventura GD (2009) On the crystal structure and crystal chemistry of pollucite, (Cs, Na)16Al16Si32O96·nH2O: a natural microporous material of interest in nuclear technology. Am Mineral 94:1560–1568

    Article  Google Scholar 

  • Gottardi G, Galli E (1985) Natural zeolites. Springer, Berlin

    Book  Google Scholar 

  • Griesinger A, Spindler K, Hahne E (1995) Measurements and theoretical modelling of the effective thermal conductivity of zeolites. Int J Heat Mass Transf 42:4363–4374

    Article  Google Scholar 

  • Hemmingway BS, Robie RA, Kittick JA, Grew ES, Nelen JA, London D (1984) The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalite to 1800 K. Am Mineral 69:701–710

    Google Scholar 

  • Hofmeister AM (2007) Thermal diffusivity of aluminous spinels and magnetite at elevated temperature with implications for heat transport in Earth’s transition zone. Am Mineral 92:1899–1911

    Article  Google Scholar 

  • Hofmeister AM, Pertermann M, Branlund JM (2007) Thermal conductivity of the Earth. In: Schubert G, Price GD (eds) Treatise in geophysics, vol 2., Mineral physicsElsevier, The Netherlands, pp 543–578

    Chapter  Google Scholar 

  • Hofmeister AM, Pertermann M (2008) Thermal diffusivity of clinopyroxenes at elevated temperature. Eur J Mineral 20:537–549

    Article  Google Scholar 

  • Hofmeister AM, Whittington AG, Pertermann M (2009) Transport properties of high albite crystals and near-endmember feldspar and pyroxene glasses and melts to high temperature. Contrib Mineral Petrol 158:381–400

    Article  Google Scholar 

  • Hofmeister AM, Dong JJ, Branlund JM (2014) Thermal diffusivity of electrical insulators at high temperatures: evidence for diffusion of phonon-polaritons at infrared frequencies augmenting phonon heat conduction. J Appl Phys 115:163517. doi:10.1063/1.4873295

    Article  Google Scholar 

  • Horai K (1971) Thermal conductivity of rock-forming minerals. J Geophys Res 76:1278–1308

    Article  Google Scholar 

  • Hovis GL, Roux J (1993) Thermodynamic mixing properties of nepheline-kalsilite crystalline solutions. Am J Sci 293:1108–1127

    Article  Google Scholar 

  • Hovis GL, Crelling J, Wattles D, Dreibelbis B, Dennison A, Keohane M, Brennan S (2003) Thermal expansion of nepheline-kalsilite crystalline solutions. Mineral Mag 67:535–546

    Article  Google Scholar 

  • Johnson GK, Flotow HE, O’Hare PAG, Wise WS (1982) Thermodynamic studies of zeolites: analcime and dehydrated analcime. Am Mineral 67:736–748

    Google Scholar 

  • Julian CL (1965) Theory of heat conduction in rare-gas crystals. Phys Rev A 137:128–137

    Article  Google Scholar 

  • Kelley KK, Todd SS, Orr RL, King EG, Bonnickson KR (1953) Thermodynamic properties of sodium aluminum and potassium aluminum silicates, vol 4955. U.S. Bureau of Mines Report Investigations, Washington, DC, p 21

    Google Scholar 

  • Kim Y, Kirkpatrick J (1998) High-temperature multi-nuclear NMR investigation of analcime. Am Mineral 83:339–347

    Google Scholar 

  • Knight KS (2014) The temperature-dependence of the volume expansivity and the thermal expansion tensor of petalite between 4.2 K and 600 K. J Mineral Petrol Sci 109:118–124

    Article  Google Scholar 

  • Kobayashi H, Yanase I, Mitamura T (1997) A new model for the pollucite thermal expansion mechanism. J Am Ceram Soc 80:2161–2164

    Article  Google Scholar 

  • Komada N, Westrum EF Jr, Hemingway BS, Zolotov MY, Semenov YV, Khodakovsky IL, Anovitz LM (1995) Thermodynamic properties of sodalite at temperatures from 10 K to 1000 K. J Chem Thermodyn 27:1119–1132

    Article  Google Scholar 

  • Komada N, Moecher DP, Westrum EF Jr, Hemingway BS, Zolotov MY, Semenov YV, Khodakovsky IL (1996) Thermodynamic properties of scapolites at temperatures ranging from 10 K to 1000 K. J Chem Thermodyn 28:943–971

    Article  Google Scholar 

  • Lange R, Carmichael ISE, Stebbins J (1986) Phase transitions in leucite (KAlSi2O6), orthorhombic KAlSiO4, and their iron analogues (KFeSi2O6, KFeSiO4). Am Mineral 71:937–945

    Google Scholar 

  • Mazzi F, Galli E, Gottardi G (1976) The crystal structure of tetragonal leucite. Am Mineral 61:108–115

    Google Scholar 

  • Mehling H, Hautzinger G, Nilsson O, Fricke J, Hofmann R, Hahn O (1998) Thermal diffusivity of semitransparent materials determined by the laser-flash method applying a new mathematical model. Int J Thermophys 19:941–949

    Article  Google Scholar 

  • Murashov VV, White MA (2002) Thermal properties of zeolites: effective thermal conductivity of dehydrated powdered zeolite 4A. Mater Chem Phys 75:178–180

    Article  Google Scholar 

  • Ogorodova LP, Melchakova LV, Kiselava IA, Belitsky IA (2003) Thermochemical study of natural pollucite. Thermochim Acta 403:251–256

    Article  Google Scholar 

  • Palmer DC (1994) Crystal maker: interactive crystallography for Macintosh and Power Macintosh. Lynxvale Ltd., Cambridge

    Google Scholar 

  • Palmer DC, Putnis A, Salje EKH (1988) Twinning in tetragonal leucite. Phys Chem Mineral 16:298–303

    Article  Google Scholar 

  • Palmer DC, Dove MT, Ibberson RM, Powell BM (1997) Structural behavior, crystal chemistry, and phase transitions in substituted leucite: high-resolution neutron powder diffraction studies. Am Mineral 82:16–29

    Google Scholar 

  • Parker JW, Jenkins JR, Butler PC, Abbott GI (1961) Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684

    Article  Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals. Am Mineral 91:1747–1760

    Article  Google Scholar 

  • Phillips BL, Kirkpatrick RJ (1994) Short-range Si–Al order in leucite and analcime: determination of the configurational entropy from 27Al and variable-temperature 29Si NMR spectroscopy of leucite, its Cs and Rb-exchanged derivatives and analcime. Am Mineral 79:1025–1031

    Google Scholar 

  • Pizani PS, Terrile MC, Farach HA, Poole CP Jr (1985) Color centers in sodalite. Am Mineral 70:1186–1192

    Google Scholar 

  • Richet P, Robie RA, Rogez J, Hemingway BS, Courtial P, Tequi C (1990) Thermodynamics of open networks: ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs. Phys Chem Mineral 17:385–394

    Google Scholar 

  • Rossman GR (1988) Optical spectroscopy. Rev Mineral 18:207–254

    Google Scholar 

  • Simmons WB Jr, Peacor DR (1972) Refinement of the crystal structure of a volcanic nepheline. Am Mineral 57:1711–1719

    Google Scholar 

  • Sylvester GC, Anderson GM (1976) The Davis nepheline pegmatite and associated nepheline gniesses near Bancroft Ontario. Can J Earth Sci 13:249–265

    Article  Google Scholar 

  • Tait KT, Sololova E, Hawthorne FC, Khomyakov AP (2003) The crystal chemistry of nepheline. Can Mineral 41:61–70

    Article  Google Scholar 

  • Taylor D (1968) The thermal expansion of sodalite group of minerals. Mineral Mag 36:761–769

    Article  Google Scholar 

  • Taylor D, Henderson CMB (1968) The thermal expansion of the leucite group of minerals. Am Mineral 53:1476–1489

    Google Scholar 

  • Xu H, Navrotsky A, Balmer ML, Su Y (2002) Crystal chemistry and phase transitions in substituted pollucites along the CsAlSi2O6–CsTiSi2O6.5 join: a powder synchrotron X-ray diffractometry study. J Am Ceram Soc 85:1235–1242

    Article  Google Scholar 

Download references

Acknowledgments

I thank P. Carpenter (Washington U.) for electron microprobe analyses. This work was supported by NSF Grant EAR-1321857.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Hofmeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofmeister, A.M., Ke, R. Heat transport properties of feldspathoids and ANA zeolites as a function of temperature. Phys Chem Minerals 42, 693–706 (2015). https://doi.org/10.1007/s00269-015-0755-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0755-8

Keywords

Navigation