Abstract
We develop several applications of the fact that the Yokonuma–Hecke algebra of the general linear group GL is isomorphic to a direct sum of matrix algebras associated to Iwahori–Hecke algebras of type A . This includes a description of the semisimple and modular representation theory of the Yokonuma–Hecke algebras of GL and a complete classification of all the Markov traces for them. Finally, from these Markov traces, we construct 3-variables polynomials which are invariants for framed and classical knots and links, and investigate their properties with the help of the isomorphism. In particular, for classical knots, a consequence of the construction is that the obtained set of invariants is topologically equivalent to the HOMFLYPT polynomial. We thus recover results of Chlouveraki et al. (2015, arXiv:1505.06666) about the Juyumaya–Lambropoulou invariants.
Similar content being viewed by others
Notes
We thank G. Lusztig for pointing us this fact.
References
Chlouveraki, M., Juyumaya, J., Karvounis, K., Lambropoulou, S.: Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras. Preprint (2015). arXiv:1505.06666
Chlouveraki, M., Lambropoulou, S.: The Yokonuma–Hecke algebras and the HOMFLYPT polynomial. J. Knot Theory Ramif. 22(14), 1350080 (2013)
Chlouveraki, M., Poulain d’Andecy, L.: Representation theory of the Yokonuma–Hecke algebra. Adv. Math. 259, 134–172 (2014)
Dipper, R., Mathas, A.: Morita equivalences of Ariki–Koike algebras. Math. Z. 240(3), 579–610 (2002)
Du, J., Rui, H.: Ariki–Koike algebras with semisimple bottoms. Math. Z. 234(4), 807–830 (2000)
Geck M., Jacon, N.: Representations of Hecke algebras at roots of unity. In: Algebra and Applications, vol. 15. Springer, London (2011)
Geck M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori–Hecke algebras. In: London Mathematical Society Monographs. New Series, 21. The Clarendon Press, Oxford University Press, New York (2000)
Jones, V.F.R.: Hecke algebra representations of braid groups and links polynomials. Ann. Math. 126, 335–388 (1987)
Juyumaya, J.: Sur les nouveaux générateurs de l’algèbre de Hecke H(G, U,1). J. Algebra 204, 49–68 (1998)
Juyumaya, J.: Markov trace on the Yokonuma–Hecke algebra. J. Knot Theory Ramif. 13, 25–39 (2004)
Juyumaya, J., Kannan, S.: Braid relations in the Yokonuma–Hecke algebra. J. Algebra 239, 272–297 (2001)
Juyumaya, J., Lambropoulou, S.: p-adic framed braids. Topol. Appl. 154, 1804–1826 (2007)
Juyumaya, J., Lambropoulou, S.: An invariant for singular knots. J. Knot Theory Ramif. 18, 825–840 (2009)
Juyumaya, J., Lambropoulou, S.: An adelic extension of the Jones polynomial. In: Banagl, M., Vogel, D. (eds.) The Mathematics of Knots, Contributions in the Mathematical and Computational Sciences, vol. 1. Springer, Berlin (2011)
Juyumaya, J., Lambropoulou, S.: p-adic framed braids II. Adv. Math. 234, 149–191 (2013)
Ko, K.H., Smolinsky, L.: The framed braid group and 3-manifolds. Proc. Am. Math. Soc. 115(2), 541–551 (1992)
Lam, T.Y.: Lectures on Modules and Rings, vol. 189. Springer, Berlin (1999)
Lusztig, G.: Character sheaves on disconnected groups, VII. Represent. Theory 9, 209–266 (2005)
The Knot Atlas: The Thistlethwaite Link Table. Retrieved January 22, 2015 from http://katlas.org/wiki/The_Thistlethwaite_Link_Table
Thiem, N.: Unipotent Hecke algebras of \({\rm GL}_n(\mathbb{F}_q)\). J. Algebra 284, 559–577 (2005)
Thiem, N.: A skein-like multiplication algorithm for unipotent Hecke algebras. Trans. Am. Math. Soc. 359(4), 1685–1724 (2007)
Yokonuma, T.: Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini. C. R. Acad. Sci. Paris Ser. I Math. 264, 344–347 (1967)
Acknowledgments
The authors thank Cédric Bonnafé, Sofia Lambropoulou and Ivan Marin for useful discussions and comments. The authors are grateful to Georges Lusztig for having indicated to them the reference [18] which was not known at the time of the first version of this paper. The first author is supported by Agence National de la Recherche Projet ACORT ANR-12-JS01-0003.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jacon, N., Poulain d’Andecy, L. An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants. Math. Z. 283, 301–338 (2016). https://doi.org/10.1007/s00209-015-1598-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-015-1598-1