[go: up one dir, main page]

Skip to main content
Log in

An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We develop several applications of the fact that the Yokonuma–Hecke algebra of the general linear group GL is isomorphic to a direct sum of matrix algebras associated to Iwahori–Hecke algebras of type A . This includes a description of the semisimple and modular representation theory of the Yokonuma–Hecke algebras of GL and a complete classification of all the Markov traces for them. Finally, from these Markov traces, we construct 3-variables polynomials which are invariants for framed and classical knots and links, and investigate their properties with the help of the isomorphism. In particular, for classical knots, a consequence of the construction is that the obtained set of invariants is topologically equivalent to the HOMFLYPT polynomial. We thus recover results of Chlouveraki et al. (2015, arXiv:1505.06666) about the Juyumaya–Lambropoulou invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We thank G. Lusztig for pointing us this fact.

References

  1. Chlouveraki, M., Juyumaya, J., Karvounis, K., Lambropoulou, S.: Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras. Preprint (2015). arXiv:1505.06666

  2. Chlouveraki, M., Lambropoulou, S.: The Yokonuma–Hecke algebras and the HOMFLYPT polynomial. J. Knot Theory Ramif. 22(14), 1350080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chlouveraki, M., Poulain d’Andecy, L.: Representation theory of the Yokonuma–Hecke algebra. Adv. Math. 259, 134–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dipper, R., Mathas, A.: Morita equivalences of Ariki–Koike algebras. Math. Z. 240(3), 579–610 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Du, J., Rui, H.: Ariki–Koike algebras with semisimple bottoms. Math. Z. 234(4), 807–830 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Geck M., Jacon, N.: Representations of Hecke algebras at roots of unity. In: Algebra and Applications, vol. 15. Springer, London (2011)

  7. Geck M., Pfeiffer, G.: Characters of finite Coxeter groups and Iwahori–Hecke algebras. In: London Mathematical Society Monographs. New Series, 21. The Clarendon Press, Oxford University Press, New York (2000)

  8. Jones, V.F.R.: Hecke algebra representations of braid groups and links polynomials. Ann. Math. 126, 335–388 (1987)

    Article  MATH  Google Scholar 

  9. Juyumaya, J.: Sur les nouveaux générateurs de l’algèbre de Hecke H(G, U,1). J. Algebra 204, 49–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Juyumaya, J.: Markov trace on the Yokonuma–Hecke algebra. J. Knot Theory Ramif. 13, 25–39 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Juyumaya, J., Kannan, S.: Braid relations in the Yokonuma–Hecke algebra. J. Algebra 239, 272–297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Juyumaya, J., Lambropoulou, S.: p-adic framed braids. Topol. Appl. 154, 1804–1826 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Juyumaya, J., Lambropoulou, S.: An invariant for singular knots. J. Knot Theory Ramif. 18, 825–840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Juyumaya, J., Lambropoulou, S.: An adelic extension of the Jones polynomial. In: Banagl, M., Vogel, D. (eds.) The Mathematics of Knots, Contributions in the Mathematical and Computational Sciences, vol. 1. Springer, Berlin (2011)

    Google Scholar 

  15. Juyumaya, J., Lambropoulou, S.: p-adic framed braids II. Adv. Math. 234, 149–191 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ko, K.H., Smolinsky, L.: The framed braid group and 3-manifolds. Proc. Am. Math. Soc. 115(2), 541–551 (1992)

    MathSciNet  MATH  Google Scholar 

  17. Lam, T.Y.: Lectures on Modules and Rings, vol. 189. Springer, Berlin (1999)

    MATH  Google Scholar 

  18. Lusztig, G.: Character sheaves on disconnected groups, VII. Represent. Theory 9, 209–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. The Knot Atlas: The Thistlethwaite Link Table. Retrieved January 22, 2015 from http://katlas.org/wiki/The_Thistlethwaite_Link_Table

  20. Thiem, N.: Unipotent Hecke algebras of \({\rm GL}_n(\mathbb{F}_q)\). J. Algebra 284, 559–577 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thiem, N.: A skein-like multiplication algorithm for unipotent Hecke algebras. Trans. Am. Math. Soc. 359(4), 1685–1724 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yokonuma, T.: Sur la structure des anneaux de Hecke d’un groupe de Chevalley fini. C. R. Acad. Sci. Paris Ser. I Math. 264, 344–347 (1967)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Cédric Bonnafé, Sofia Lambropoulou and Ivan Marin for useful discussions and comments. The authors are grateful to Georges Lusztig for having indicated to them the reference [18] which was not known at the time of the first version of this paper. The first author is supported by Agence National de la Recherche Projet ACORT ANR-12-JS01-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Poulain d’Andecy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacon, N., Poulain d’Andecy, L. An isomorphism theorem for Yokonuma–Hecke algebras and applications to link invariants. Math. Z. 283, 301–338 (2016). https://doi.org/10.1007/s00209-015-1598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1598-1

Keywords

Navigation