Abstract
The complex singlet extension CxSM of the Standard Model (SM) is a simple extension of the SM with two visible Higgs bosons in the spectrum and a Dark Matter (DM) candidate. In this paper we complete the computation of the next-to-leading (NLO) electroweak (EW) corrections to on-shell and non-loop-induced Higgs decays. Our calculations are implemented in the code EWsHDECAY which also includes the relevant QCD corrections. Performing an extensive parameter scan in the model and including all relevant theoretical and experimental single- and di-Higgs as well as DM constraints, we obtain a viable parameter sample. We find that current DM constraints are able to test the model in DM mass regions where collider searches are not sensitive. The relative EW corrections turn out to be large for scenarios with relatively large couplings, threshold effects or small leading-order (LO) widths. Otherwise, they are of typical EW size and can amount up to about 20–25%. The theory uncertainty derived from the change of the renormalization scheme dependence then is of a few per cent. While the NLO corrections applied in the constraints due to single- and di-Higgs searches impact the validity of specific parameter points, the overall shape of the allowed parameter region is not yet sensitive to the EW corrections. This picture will change with further increased experimental precision in the future and necessitates precise predictions on the theory side as presented in this paper.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
F. Egle, M. Mühlleitner, R. Santos and J. Viana, One-loop corrections to the Higgs boson invisible decay in a complex singlet extension of the SM, Phys. Rev. D 106 (2022) 095030 [arXiv:2202.04035] [INSPIRE].
ATLAS collaboration, Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 (2019) 231801 [arXiv:1904.05105] [INSPIRE].
R. Costa, M. Mühlleitner, M.O.P. Sampaio and R. Santos, Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM, JHEP 06 (2016) 034 [arXiv:1512.05355] [INSPIRE].
A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].
HDECAY collaboration, HDECAY: Twenty++ years after, Comput. Phys. Commun. 238 (2019) 214 [arXiv:1801.09506] [INSPIRE].
sHDECAY collaboration, Webpage for download of sHDECAY, https://www.itp.kit.edu/~maggie/sHDECAY/.
M. Krause et al., Gauge-independent Renormalization of the 2-Higgs-Doublet Model, JHEP 09 (2016) 143 [arXiv:1605.04853] [INSPIRE].
M. Krause, M. Mühlleitner, R. Santos and H. Ziesche, Higgs-to-Higgs boson decays in a 2HDM at next-to-leading order, Phys. Rev. D 95 (2017) 075019 [arXiv:1609.04185] [INSPIRE].
M. Krause, M. Mühlleitner and M. Spira, 2HDECAY — A program for the calculation of electroweak one-loop corrections to Higgs decays in the Two-Higgs-Doublet Model including state-of-the-art QCD corrections, Comput. Phys. Commun. 246 (2020) 106852 [arXiv:1810.00768] [INSPIRE].
M. Krause and M. Mühlleitner, Impact of Electroweak Corrections on Neutral Higgs Boson Decays in Extended Higgs Sectors, JHEP 04 (2020) 083 [arXiv:1912.03948] [INSPIRE].
M. Krause, D. Lopez-Val, M. Mühlleitner and R. Santos, Gauge-independent Renormalization of the N2HDM, JHEP 12 (2017) 077 [arXiv:1708.01578] [INSPIRE].
M. Krause and M. Mühlleitner, ewN2HDECAY — A program for the Calculation of Electroweak One-Loop Corrections to Higgs Decays in the Next-to-Minimal Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections, arXiv:1904.02103 [https://doi.org/10.1016/j.cpc.2019.106924] [INSPIRE].
A. Denner, L. Jenniches, J.-N. Lang and C. Sturm, Gauge-independent \( \overline{\textrm{MS}} \) renormalization in the 2HDM, JHEP 09 (2016) 115 [arXiv:1607.07352] [INSPIRE].
L. Altenkamp, S. Dittmaier and H. Rzehak, Renormalization schemes for the Two-Higgs-Doublet Model and applications to h → WW/ZZ → 4 fermions, JHEP 09 (2017) 134 [arXiv:1704.02645] [INSPIRE].
L. Altenkamp, S. Dittmaier and H. Rzehak, Precision calculations for h → WW/ZZ → 4 fermions in the Two-Higgs-Doublet Model with Prophecy4f, JHEP 03 (2018) 110 [arXiv:1710.07598] [INSPIRE].
A. Denner, S. Dittmaier and J.-N. Lang, Renormalization of mixing angles, JHEP 11 (2018) 104 [arXiv:1808.03466] [INSPIRE].
M. Fox, W. Grimus and M. Löschner, Renormalization and radiative corrections to masses in a general Yukawa model, Int. J. Mod. Phys. A 33 (2018) 1850019 [arXiv:1705.09589] [INSPIRE].
W. Grimus and M. Löschner, Renormalization of the multi-Higgs-doublet Standard Model and one-loop lepton mass corrections, JHEP 11 (2018) 087 [arXiv:1807.00725] [INSPIRE].
J. Fleischer and F. Jegerlehner, Radiative Corrections to Higgs Decays in the Extended Weinberg-Salam Model, Phys. Rev. D 23 (1981) 2001 [INSPIRE].
A. Pilaftsis, Resonant CP violation induced by particle mixing in transition amplitudes, Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [INSPIRE].
S. Kanemura, Y. Okada, E. Senaha and C.-P. Yuan, Higgs coupling constants as a probe of new physics, Phys. Rev. D 70 (2004) 115002 [hep-ph/0408364] [INSPIRE].
J.M. Cornwall and J. Papavassiliou, Gauge Invariant Three Gluon Vertex in QCD, Phys. Rev. D 40 (1989) 3474 [INSPIRE].
J. Papavassiliou, Gauge independent transverse and longitudinal self energies and vertices via the pinch technique, Phys. Rev. D 50 (1994) 5958 [hep-ph/9406258] [INSPIRE].
D. Azevedo et al., One-loop corrections to the Higgs boson invisible decay in the dark doublet phase of the N2HDM, JHEP 10 (2021) 044 [arXiv:2104.03184] [INSPIRE].
A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the Higgs-boson decay H → WW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].
J. Kublbeck, M. Bohm and A. Denner, Feyn Arts: Computer Algebraic Generation of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].
R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].
V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0, Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].
T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].
G.J. van Oldenborgh and J.A.M. Vermaseren, New Algorithms for One Loop Integrals, Z. Phys. C 46 (1990) 425 [INSPIRE].
F. Staub, From Superpotential to Model Files for FeynArts and CalcHep/CompHep, Comput. Phys. Commun. 181 (2010) 1077 [arXiv:0909.2863] [INSPIRE].
F. Staub, Automatic Calculation of supersymmetric Renormalization Group Equations and Self Energies, Comput. Phys. Commun. 182 (2011) 808 [arXiv:1002.0840] [INSPIRE].
F. Staub, SARAH 3.2: Dirac Gauginos, UFO output, and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].
F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014) 1773 [arXiv:1309.7223] [INSPIRE].
F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780 [arXiv:1503.04200] [INSPIRE].
N.D. Christensen and C. Duhr, FeynRules — Feynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].
C. Degrande et al., UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
R. Coimbra, M.O.P. Sampaio and R. Santos, ScannerS: Constraining the phase diagram of a complex scalar singlet at the LHC, Eur. Phys. J. C 73 (2013) 2428 [arXiv:1301.2599] [INSPIRE].
M. Mühlleitner, M.O.P. Sampaio, R. Santos and J. Wittbrodt, ScannerS: parameter scans in extended scalar sectors, Eur. Phys. J. C 82 (2022) 198 [arXiv:2007.02985] [INSPIRE].
B.W. Lee, C. Quigg and H.B. Thacker, Weak Interactions at Very High-Energies: The role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
P. Bechtle et al., HiggsSignals: Confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
P. Bechtle et al., HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era, Eur. Phys. J. C 81 (2021) 145 [arXiv:2012.09197] [INSPIRE].
P. Bechtle et al., HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].
P. Bechtle et al., HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era, Eur. Phys. J. C 80 (2020) 1211 [arXiv:2006.06007] [INSPIRE].
G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 2.0: A program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367 [hep-ph/0607059] [INSPIRE].
C. Gross, O. Lebedev and T. Toma, Cancellation Mechanism for Dark-Matter-Nucleon Interaction, Phys. Rev. Lett. 119 (2017) 191801 [arXiv:1708.02253] [INSPIRE].
D. Azevedo et al., Testing scalar versus vector dark matter, Phys. Rev. D 99 (2019) 015017 [arXiv:1808.01598] [INSPIRE].
D. Azevedo et al., One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP 01 (2019) 138 [arXiv:1810.06105] [INSPIRE].
S. Glaus et al., Electroweak Corrections in a Pseudo-Nambu Goldstone Dark Matter Model Revisited, JHEP 12 (2020) 034 [arXiv:2008.12985] [INSPIRE].
XENON collaboration, Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302 [arXiv:1805.12562] [INSPIRE].
PandaX-4T collaboration, Dark Matter Search Results from the PandaX-4T Commissioning Run, Phys. Rev. Lett. 127 (2021) 261802 [arXiv:2107.13438] [INSPIRE].
LZ collaboration, First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131 (2023) 041002 [arXiv:2207.03764] [INSPIRE].
P. Basler and M. Mühlleitner, BSMPT (Beyond the Standard Model Phase Transitions): A tool for the electroweak phase transition in extended Higgs sectors, Comput. Phys. Commun. 237 (2019) 62 [arXiv:1803.02846] [INSPIRE].
P. Basler, M. Mühlleitner and J. Müller, BSMPT v2 a tool for the electroweak phase transition and the baryon asymmetry of the universe in extended Higgs Sectors, Comput. Phys. Commun. 269 (2021) 108124 [arXiv:2007.01725] [INSPIRE].
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe, Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32 [INSPIRE].
H. Abouabid et al., Benchmarking di-Higgs production in various extended Higgs sector models, JHEP 09 (2022) 011 [arXiv:2112.12515] [INSPIRE].
R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Comput. Phys. Commun. 184 (2013) 1605 [arXiv:1212.3249] [INSPIRE].
S. Liebler, Neutral Higgs production at proton colliders in the CP-conserving NMSSM, Eur. Phys. J. C 75 (2015) 210 [arXiv:1502.07972] [INSPIRE].
R.V. Harlander, S. Liebler and H. Mantler, SusHi Bento: Beyond NNLO and the heavy-top limit, Comput. Phys. Commun. 212 (2017) 239 [arXiv:1605.03190] [INSPIRE].
ATLAS collaboration, Search for pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 01 (2019) 030 [arXiv:1804.06174] [INSPIRE].
ATLAS collaboration, Search for resonant pair production of Higgs bosons in the \( b\overline{b}b\overline{b} \) final state using pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2021-035, CERN, Geneva (2021).
CMS collaboration, Search for resonant Higgs boson pair production in four b quark final state using large-area jets in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, CMS-PAS-B2G-20-004 (2021) [INSPIRE].
ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b} \)τ+τ− decay channel in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 121 (2018) 191801 [Erratum ibid. 122 (2019) 089901] [arXiv:1808.00336] [INSPIRE].
ATLAS collaboration, Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS, JHEP 11 (2020) 163 [arXiv:2007.14811] [INSPIRE].
ATLAS collaboration, Search for resonant and non-resonant Higgs boson pair production in the \( b\overline{b} \)τ+τ− decay channel using 13 TeV pp collision data from the ATLAS detector, ATLAS-CONF-2021-030, CERN, Geneva (2021).
ATLAS collaboration, Search for Higgs boson pair production in the \( \gamma \gamma b\overline{b} \) final state with 13 TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040 [arXiv:1807.04873] [INSPIRE].
ATLAS collaboration, Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, ATLAS-CONF-2021-016, CERN, Geneva (2021).
ATLAS collaboration, Search for Higgs boson pair production in the \( b\overline{b} WW \)* decay mode at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 04 (2019) 092 [arXiv:1811.04671] [INSPIRE].
CMS collaboration, Search for resonant pair production of Higgs bosons in the bbZZ channel in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 102 (2020) 032003 [arXiv:2006.06391] [INSPIRE].
ATLAS collaboration, Search for Higgs boson pair production in the γγWW* channel using pp collision data recorded at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 1007 [arXiv:1807.08567] [INSPIRE].
ATLAS collaboration, Search for Higgs boson pair production in the WW(*)WW(*) decay channel using ATLAS data recorded at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2019) 124 [arXiv:1811.11028] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into μ+μ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].
J. Alison et al., Higgs boson potential at colliders: Status and perspectives, Rev. Phys. 5 (2020) 100045 [arXiv:1910.00012] [INSPIRE].
A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Testing Higgs selfcouplings at e+e− linear colliders, Eur. Phys. J. C 10 (1999) 27 [hep-ph/9903229] [INSPIRE].
A. Djouadi, W. Kilian, M. Mühlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].
J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [https://doi.org/10.23731/CYRM-2017-002] [INSPIRE].
E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].
D.A. Dicus, C. Kao and S.S.D. Willenbrock, Higgs Boson Pair Production From Gluon Fusion, Phys. Lett. B 203 (1988) 457 [INSPIRE].
T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [hep-ph/9603205] [INSPIRE].
ATLAS collaboration, Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at \( \sqrt{s} \) = 13 TeV, Phys. Lett. B 843 (2023) 137745 [arXiv:2211.01216] [INSPIRE].
CMS collaboration, A portrait of the Higgs boson by the CMS experiment ten years after the discovery, Nature 607 (2022) 60 [arXiv:2207.00043] [INSPIRE].
Acknowledgments
RS and JV are supported by FCT under contracts UIDB/00618/2020, UIDP/00618/2020, PTDC/FIS-PAR/31000/2017, CERN/FISPAR /0002/2017, CERN/FIS-PAR/0014/2019. The work of FE and MM is supported by the BMBF-Project 05H21VKCCA.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2306.04127
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Egle, F., Mühlleitner, M., Santos, R. et al. Electroweak corrections to Higgs boson decays in a Complex Singlet extension of the SM and their phenomenological impact. J. High Energ. Phys. 2023, 116 (2023). https://doi.org/10.1007/JHEP11(2023)116
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2023)116