Abstract
We explore a new mechanism for reproducing the Dark Matter (DM) abundance: scatterings of one DM particle on light Standard Model particles. Strong bounds on its decays can be satisfied if DM undergoes freeze-in and has a mass around or below the pion mass. This happens, for example, in theories with a right-handed neutrino interacting with charged fermions through a leptoquark exchange. These leptoquarks can be linked to the ones motivated by the B-physics anomalies if assumptions about the flavour structure are made. DM signals are unusual, with interesting possibilities for direct and indirect detection. Achieving thermal freeze-out instead requires models with more than one DM flavour, and couplings parametrically smaller than what needed by the usual pair annihilations.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].
F. D’Eramo and J. Thaler, Semi-annihilation of dark matter, JHEP 06 (2010) 109 [arXiv:1003.5912] [INSPIRE].
T. Bringmann, P.F. Depta, M. Hufnagel, J.T. Ruderman and K. Schmidt-Hoberg, Dark matter from exponential growth, Phys. Rev. Lett. 127 (2021) 191802 [arXiv:2103.16572] [INSPIRE].
E.D. Carlson, M.E. Machacek and L.J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].
M. Farina, D. Pappadopulo, J.T. Ruderman and G. Trevisan, Phases of cannibal dark matter, JHEP 12 (2016) 039 [arXiv:1607.03108] [INSPIRE].
D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, B-physics anomalies: a guide to combined explanations, JHEP 11 (2017) 044 [arXiv:1706.07808] [INSPIRE].
A. Azatov, D. Barducci, D. Ghosh, D. Marzocca and L. Ubaldi, Combined explanations of B-physics anomalies: the sterile neutrino solution, JHEP 10 (2018) 092 [arXiv:1807.10745] [INSPIRE].
G. Isidori, D. Lancierini, P. Owen and N. Serra, On the significance of new physics in b → sℓ+ℓ− decays, Phys. Lett. B 822 (2021) 136644 [arXiv:2104.05631] [INSPIRE].
C. Cornella, D.A. Faroughy, J. Fuentes-Martin, G. Isidori and M. Neubert, Reading the footprints of the B-meson flavor anomalies, JHEP 08 (2021) 050 [arXiv:2103.16558] [INSPIRE].
S. Fajfer and N. Košnik, Vector leptoquark resolution of RK and \( {R}_{D^{\left(\ast \right)}} \) puzzles, Phys. Lett. B 755 (2016) 270 [arXiv:1511.06024] [INSPIRE].
M. Bauer and M. Neubert, Minimal leptoquark explanation for the \( {R}_{D^{\left(\ast \right)}} \), RK, and (g − 2)μ anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].
R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78 (2018) 193 [arXiv:1712.06844] [INSPIRE].
L. Di Luzio, A. Greljo and M. Nardecchia, Gauge leptoquark as the origin of B-physics anomalies, Phys. Rev. D 96 (2017) 115011 [arXiv:1708.08450] [INSPIRE].
R. Mandal, Fermionic dark matter in leptoquark portal, Eur. Phys. J. C 78 (2018) 726 [arXiv:1808.07844] [INSPIRE].
M.J. Baker, D.A. Faroughy and S. Trifinopoulos, Collider signatures of coannihilating dark matter in light of the B-physics anomalies, JHEP 11 (2021) 084 [arXiv:2109.08689] [INSPIRE].
G. Bélanger et al., Leptoquark manoeuvres in the dark: a simultaneous solution of the dark matter problem and the \( {R}_{D^{\left(\ast \right)}} \) anomalies, JHEP 02 (2022) 042 [arXiv:2111.08027] [INSPIRE].
D. Guadagnoli, M. Reboud and P. Stangl, The dark side of 4321, JHEP 10 (2020) 084 [arXiv:2005.10117] [INSPIRE].
M.J. Baker et al., The coannihilation codex, JHEP 12 (2015) 120 [arXiv:1510.03434] [INSPIRE].
R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining light dark matter with diffuse X-ray and gamma-ray observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].
M. Boudaud, J. Lavalle and P. Salati, Novel cosmic-ray electron and positron constraints on MeV dark matter particles, Phys. Rev. Lett. 119 (2017) 021103 [arXiv:1612.07698] [INSPIRE].
H. Liu, W. Qin, G.W. Ridgway and T.R. Slatyer, Lyman-α constraints on cosmic heating from dark matter annihilation and decay, Phys. Rev. D 104 (2021) 043514 [arXiv:2008.01084] [INSPIRE].
L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-in production of FIMP dark matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile neutrino dark matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].
A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile neutrino dark matter, Prog. Part. Nucl. Phys. 104 (2019) 1 [arXiv:1807.07938] [INSPIRE].
J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. 11 (1975) 703] [INSPIRE].
R. Barbieri, G. Isidori, A. Pattori and F. Senia, Anomalies in B-decays and U(2) flavour symmetry, Eur. Phys. J. C 76 (2016) 67 [arXiv:1512.01560] [INSPIRE].
W. Altmannshofer and P. Stangl, New physics in rare B decays after Moriond 2021, Eur. Phys. J. C 81 (2021) 952 [arXiv:2103.13370] [INSPIRE].
V. Gherardi, D. Marzocca and E. Venturini, Low-energy phenomenology of scalar leptoquarks at one-loop accuracy, JHEP 01 (2021) 138 [arXiv:2008.09548] [INSPIRE].
I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1 [arXiv:1603.04993] [INSPIRE].
F. del Aguila, S. Bar-Shalom, A. Soni and J. Wudka, Heavy Majorana neutrinos in the effective Lagrangian description: application to hadron colliders, Phys. Lett. B 670 (2009) 399 [arXiv:0806.0876] [INSPIRE].
T.R. Slatyer and C.-L. Wu, General constraints on dark matter decay from the cosmic microwave background, Phys. Rev. D 95 (2017) 023010 [arXiv:1610.06933] [INSPIRE].
ATLAS collaboration, Search for a heavy charged boson in events with a charged lepton and missing transverse momentum from pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 100 (2019) 052013 [arXiv:1906.05609] [INSPIRE].
F. Cornet and J. Rico, Contact terms in charged current processes at HERA, Phys. Lett. B 412 (1997) 343 [hep-ph/9707299] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
A. Salvio, P. Lodone and A. Strumia, Towards leptogenesis at NLO: the right-handed neutrino interaction rate, JHEP 08 (2011) 116 [arXiv:1106.2814] [INSPIRE].
G. Jackson and M. Laine, Efficient numerical integration of thermal interaction rates, JHEP 09 (2021) 125 [arXiv:2107.07132] [INSPIRE].
B. Bhattacharya, A. Datta, J.-P. Guévin, D. London and R. Watanabe, Simultaneous explanation of the RK and \( {R}_{D^{\left(\ast \right)}} \) puzzles: a model analysis, JHEP 01 (2017) 015 [arXiv:1609.09078 ] [INSPIRE].
A. Greljo, G. Isidori and D. Marzocca, On the breaking of lepton flavor universality in B decays, JHEP 07 (2015) 142 [arXiv:1506.01705] [INSPIRE].
J. Kumar, D. London and R. Watanabe, Combined explanations of the b → sμ+μ− and b → cτ−\( \overline{\nu} \) anomalies: a general model analysis, Phys. Rev. D 99 (2019) 015007 [arXiv:1806.07403] [INSPIRE].
L. Calibbi, A. Crivellin and T. Ota, Effective field theory approach to b → sℓℓ(′), B → K(*)\( \nu \overline{\nu} \) and B → D(*)τν with third generation couplings, Phys. Rev. Lett. 115 (2015) 181801 [arXiv:1506.02661] [INSPIRE].
M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].
A. Greljo and B.A. Stefanek, Third family quark-lepton unification at the TeV scale, Phys. Lett. B 782 (2018) 131 [arXiv:1802.04274] [INSPIRE].
J. Fuentes-Martin, G. Isidori, J. Pagès and B.A. Stefanek, Flavor non-universal Pati-Salam unification and neutrino masses, Phys. Lett. B 820 (2021) 136484 [arXiv:2012.10492] [INSPIRE].
C.D. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].
D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses, Nucl. Phys. B 365 (1991) 259 [INSPIRE].
R. Contino, T. Kramer, M. Son and R. Sundrum, Warped/composite phenomenology simplified, JHEP 05 (2007) 074 [hep-ph/0612180] [INSPIRE].
K. Agashe, G. Perez and A. Soni, Flavor structure of warped extra dimension models, Phys. Rev. D 71 (2005) 016002 [hep-ph/0408134] [INSPIRE].
R.S. Chivukula and H. Georgi, Composite technicolor Standard Model, Phys. Lett. B 188 (1987) 99 [INSPIRE].
L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and minimal flavour violation in supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].
R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].
A. Kusenko, Sterile neutrinos, dark matter, and the pulsar velocities in models with a Higgs singlet, Phys. Rev. Lett. 97 (2006) 241301 [hep-ph/0609081] [INSPIRE].
A. Czarnecki, W.J. Marciano and A. Sirlin, Neutron lifetime and axial coupling connection, Phys. Rev. Lett. 120 (2018) 202002 [arXiv:1802.01804] [INSPIRE].
J.A. Dror, G. Elor and R. Mcgehee, Absorption of fermionic dark matter by nuclear targets, JHEP 02 (2020) 134 [arXiv:1908.10861] [INSPIRE].
XENON collaboration, Excess electronic recoil events in XENON1T, Phys. Rev. D 102 (2020) 072004 [arXiv:2006.09721] [INSPIRE].
S. Haselschwardt, B. Lenardo, P. Pirinen and J. Suhonen, Solar neutrino detection in liquid xenon detectors via charged-current scattering to excited states, Phys. Rev. D 102 (2020) 072009 [arXiv:2009.00535] [INSPIRE].
S. Iguro, M. Takeuchi and R. Watanabe, Testing leptoquark/EFT in \( \overline{B} \) → D(*)\( l\overline{\nu} \) at the LHC, Eur. Phys. J. C 81 (2021) 406 [arXiv:2011.02486] [INSPIRE].
E. Bulbul, M. Markevitch, A. Foster, R.K. Smith, M. Loewenstein and S.W. Randall, Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters, Astrophys. J. 789 (2014) 13 [arXiv:1402.2301] [INSPIRE].
A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi and J. Franse, Unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster, Phys. Rev. Lett. 113 (2014) 251301 [arXiv:1402.4119] [INSPIRE].
J. Heeck and D. Teresi, Cold keV dark matter from decays and scatterings, Phys. Rev. D 96 (2017) 035018 [arXiv:1706.09909] [INSPIRE].
L. Covi, J.E. Kim and L. Roszkowski, Axinos as cold dark matter, Phys. Rev. Lett. 82 (1999) 4180 [hep-ph/9905212] [INSPIRE].
J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].
S. Scherer and M.R. Schindler, A chiral perturbation theory primer, hep-ph/0505265 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2111.14808
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Belfatto, B., Buttazzo, D., Gross, C. et al. Dark Matter abundance via thermal decays and leptoquark mediators. J. High Energ. Phys. 2022, 84 (2022). https://doi.org/10.1007/JHEP06(2022)084
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)084