Abstract
The cosmic electron energy spectrum recently observed by the DAMPE experiment exhibits two interesting features, including a break around 0.9 TeV and a sharp resonance near 1.4 TeV. In this analysis, we propose a dark matter explanation to both exotic features seen by DAMPE. In our model, dark matter annihilates in the galaxy via two different channels that lead to both a narrow resonance spectrum near 1.4 TeV and electron excess events over an extended energy range thus generating the break structure around TeV. The two annihilation channels are mediated by two gauge bosons that interact both with dark matter and with the standard model fermions. Dark matter annihilations through the s-channel process mediated by the heavier boson produce monoen-ergetic electron-positron pairs leading to the resonance excess. The lighter boson has a mass smaller than the dark matter such that they can be on-shell produced in dark matter annihilations in the galaxy; the lighter bosons in the final state subsequently decay to generate the extended excess events due to the smeared electron energy spectrum in this process. We further analyze constraints from various experiments, including HESS, Fermi, AMS, and LHC, to the parameter space of the model where both excess events can be accounted for. In order to interpret the two new features in the DAMPE data, dark matter annihilation cross sections in the current galaxy are typically much larger than the canonical thermal cross section needed for the correct dark matter relic abundance. This discrepancy, however, is remedied by the nonperturbative Sommerfeld enhancement because of the existence of a lighter mediator in the model.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
DAMPE collaboration, Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552 (2017) 63 [arXiv:1711.10981] [INSPIRE].
K. Fang, X.-J. Bi and P.-F. Yin, Explanation of the knee-like feature in the DAMPE cosmic e − + e + energy spectrum, Astrophys. J. 854 (2018) 57 [arXiv:1711.10996] [INSPIRE].
I. Cholis, T. Karwal and M. Kamionkowski, Features in the Spectrum of Cosmic-Ray Positrons from Pulsars, Phys. Rev. D 97 (2018) 123011 [arXiv:1712.00011] [INSPIRE].
X.-J. Huang, Y.-L. Wu, W.-H. Zhang and Y.-F. Zhou, Origins of sharp cosmic-ray electron structures and the DAMPE excess, Phys. Rev. D 97 (2018) 091701 [arXiv:1712.00005] [INSPIRE].
Q. Yuan et al., Interpretations of the DAMPE electron data, arXiv:1711.10989 [INSPIRE].
X. Liu and Z. Liu, TeV dark matter and the DAMPE electron excess, Phys. Rev. D 98 (2018) 035025 [arXiv:1711.11579] [INSPIRE].
Y.-Z. Fan, W.-C. Huang, M. Spinrath, Y.-L.S. Tsai and Q. Yuan, A model explaining neutrino masses and the DAMPE cosmic ray electron excess, Phys. Lett. B 781 (2018) 83 [arXiv:1711.10995] [INSPIRE].
G.H. Duan, L. Feng, F. Wang, L. Wu, J.M. Yang and R. Zheng, Simplified TeV leptophilic dark matter in light of DAMPE data, JHEP 02 (2018) 107 [arXiv:1711.11012] [INSPIRE].
P.-H. Gu and X.-G. He, Electrophilic dark matter with dark photon: from DAMPE to direct detection, Phys. Lett. B 778 (2018) 292 [arXiv:1711.11000] [INSPIRE].
L. Zu, C. Zhang, L. Feng, Q. Yuan and Y.-Z. Fan, Constraints on the box-shaped cosmic ray electron feature from dark matter annihilation with the AMS-02 and DAMPE data, Phys. Rev. D 98 (2018) 063010 [arXiv:1711.11052] [INSPIRE].
Y.-L. Tang, L. Wu, M. Zhang and R. Zheng, Lepton-portal Dark Matter in Hidden Valley model and the DAMPE recent results, Sci. China Phys. Mech. Astron. 61 (2018) 101003 [arXiv:1711.11058] [INSPIRE].
W. Chao and Q. Yuan, The electron-flavored Z’-portal dark matter and the DAMPE cosmic ray excess, arXiv:1711.11182 [INSPIRE].
P. Athron, C. Balázs, A. Fowlie and Y. Zhang, Model-independent analysis of the DAMPE excess, JHEP 02 (2018) 121 [arXiv:1711.11376] [INSPIRE].
J. Cao, L. Feng, X. Guo, L. Shang, F. Wang and P. Wu, Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions, Phys. Rev. D 97 (2018) 095011 [arXiv:1711.11452] [INSPIRE].
G.H. Duan, X.-G. He, L. Wu and J.M. Yang, Leptophilic dark matter in gauged U(1)Le − Lμ model in light of DAMPE cosmic ray e + + e − excess, Eur. Phys. J. C 78 (2018) 323 [arXiv:1711.11563] [INSPIRE].
P.-H. Gu, Radiative Dirac neutrino mass, DAMPE dark matter and leptogenesis, arXiv:1711.11333 [INSPIRE].
W. Chao, H.-K. Guo, H.-L. Li and J. Shu, Electron Flavored Dark Matter, Phys. Lett. B 782 (2018) 517 [arXiv:1712.00037] [INSPIRE].
C.-H. Chen, C.-W. Chiang and T. Nomura, Explaining the DAMPE e + e − excess using the Higgs triplet model with a vector dark matter, Phys. Rev. D 97 (2018) 061302 [arXiv:1712.00793] [INSPIRE].
T. Li, N. Okada and Q. Shafi, Scalar dark matter, Type II Seesaw and the DAMPE cosmic ray e + + e − excess, Phys. Lett. B 779 (2018) 130 [arXiv:1712.00869] [INSPIRE].
R. Zhu and Y. Zhang, Graviton-mediated dark matter model explanation the DAMPE electron excess and search at e + e − colliders, arXiv:1712.01143 [INSPIRE].
P.-H. Gu, Quasi-degenerate dark matter for DAMPE excess and 3.5 keV line, Sci. China Phys. Mech. Astron. 61 (2018) 101005 [arXiv:1712.00922] [INSPIRE].
T. Nomura and H. Okada, Radiative seesaw models linking to dark matter candidates inspired by the DAMPE excess, Phys. Dark Univ. 21 (2018) 90 [arXiv:1712.00941] [INSPIRE].
K. Ghorbani and P.H. Ghorbani, DAMPE electron-positron excess in leptophilic Z’ model, JHEP 05 (2018) 125 [arXiv:1712.01239] [INSPIRE].
J. Cao et al., Explaining the DAMPE data with scalar dark matter and gauged U(1)Le − Lμ interaction, Eur. Phys. J. C 78 (2018) 198 [arXiv:1712.01244] [INSPIRE].
J.-S. Niu, T. Li, R. Ding, B. Zhu, H.-F. Xue and Y. Wang, Bayesian analysis of the break in DAMPE lepton spectra, Phys. Rev. D 97 (2018) 083012 [arXiv:1712.00372] [INSPIRE].
F. Yang, M. Su and Y. Zhao, Dark Matter Annihilation from Nearby Ultra-compact Micro Halos to Explain the Tentative Excess at ∼ 1.4 TeV in DAMPE data, arXiv:1712.01724 [INSPIRE].
R. Ding, Z.-L. Han, L. Feng and B. Zhu, Confronting the DAMPE Excess with the Scotogenic Type-II Seesaw Model, Chin. Phys. C 42 (2018) 083104 [arXiv:1712.02021] [INSPIRE].
G.-L. Liu, F. Wang, W. Wang and J.M. Yang, Explaining DAMPE results by dark matter with hierarchical lepton-specific Yukawa interactions, Chin. Phys. C 42 (2018) 035101 [arXiv:1712.02381] [INSPIRE].
S.-F. Ge, H.-J. He and Y.-C. Wang, Flavor Structure of the Cosmic-Ray Electron/Positron Excesses at DAMPE, Phys. Lett. B 781 (2018) 88 [arXiv:1712.02744] [INSPIRE].
Y. Zhao, K. Fang, M. Su and M.C. Miller, A strong test of the dark matter origin of a TeV electron excess using IceCube neutrinos, JCAP 06 (2018) 030 [arXiv:1712.03210] [INSPIRE].
Y. Sui and Y. Zhang, Prospects of type-II seesaw models at future colliders in light of the DAMPE e + e − excess, Phys. Rev. D 97 (2018) 095002 [arXiv:1712.03642] [INSPIRE].
N. Okada and O. Seto, DAMPE excess from decaying right-handed neutrino dark matter, Mod. Phys. Lett. A 33 (2018) 1850157 [arXiv:1712.03652] [INSPIRE].
J. Cao, X. Guo, L. Shang, F. Wang, P. Wu and L. Zu, Scalar dark matter explanation of the DAMPE data in the minimal Left-Right symmetric model, Phys. Rev. D 97 (2018) 063016 [arXiv:1712.05351] [INSPIRE].
Z.-L. Han, W. Wang and R. Ding, Radiative Seesaw Model and DAMPE Excess from Leptophilic Gauge Symmetry, Eur. Phys. J. C 78 (2018) 216 [arXiv:1712.05722] [INSPIRE].
J.-S. Niu, T. Li and F.-Z. Xu, A Simple and Natural Interpretations of the DAMPE Cosmic Ray Electron/Positron Spectrum within Two Sigma Deviations, Eur. Phys. J. C 79 (2019) 125 [arXiv:1712.09586] [INSPIRE].
T. Nomura, H. Okada and P. Wu, A radiative neutrino mass model in light of DAMPE excess with hidden gauged U(1) symmetry, JCAP 05 (2018) 053 [arXiv:1801.04729] [INSPIRE].
Q. Yuan and L. Feng, Dark Matter Particle Explorer observations of high-energy cosmic ray electrons plus positrons and their physical implications, Sci. China Phys. Mech. Astron. 61 (2018) 101002 [arXiv:1807.11638] [INSPIRE].
X. Pan, C. Zhang and L. Feng, Interpretation of the DAMPE 1.4 TeV peak according to the decaying dark matter model, Sci. China Phys. Mech. Astron. 61 (2018) 101006.
B. Wang, X. Bi, S. Lin and P. Yin, Explanations of the DAMPE high energy electron/positron spectrum in the dark matter annihilation and pulsar scenarios, Sci. China Phys. Mech. Astron. 61 (2018) 101004.
O. Balducci, S. Hofmann and A. Kassiteridis, Small-scale structure from charged leptophilia, arXiv:1812.02182 [INSPIRE].
F. Elahi and S. Khatibi, Multi-Component Dark Matter in a Non-Abelian Dark Sector, arXiv:1902.04384 [INSPIRE].
A. Fowlie, DAMPE squib? Significance of the 1.4 TeV DAMPE excess, Phys. Lett. B 780 (2018) 181 [arXiv:1712.05089] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D.M. White, The structure of cold dark matter halos, Astrophys. J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].
H. Zhao, Analytical models for galactic nuclei, Mon. Not. Roy. Astron. Soc. 278 (1996) 488 [astro-ph/9509122] [INSPIRE].
J.F. Navarro, C.S. Frenk and S.D.M. White, A universal density profile from hierarchical clustering, Astrophys. J. 490 (1997) 493 [astro-ph/9611107] [INSPIRE].
M. Cirelli et al., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection, JCAP 03 (2011) 051 [Erratum ibid. 10 (2012) E01] [arXiv:1012.4515] [INSPIRE].
V.L. Ginzburg and S.I. Syrovatskii, The Origin of Cosmic Rays, Pergamon, Oxford, (1964).
M. Kuhlen and D. Malyshev, ATIC, PAMELA, HESS, Fermi and nearby Dark Matter subhalos, Phys. Rev. D 79 (2009) 123517 [arXiv:0904.3378] [INSPIRE].
T. Delahaye, J. Lavalle, R. Lineros, F. Donato and N. Fornengo, Galactic electrons and positrons at the Earth:new estimate of the primary and secondary fluxes, Astron. Astrophys. 524 (2010) A51 [arXiv:1002.1910] [INSPIRE].
M. Cirelli, R. Franceschini and A. Strumia, Minimal Dark Matter predictions for galactic positrons, anti-protons, photons, Nucl. Phys. B 800 (2008) 204 [arXiv:0802.3378] [INSPIRE].
J. Mardon, Y. Nomura, D. Stolarski and J. Thaler, Dark Matter Signals from Cascade Annihilations, JCAP 05 (2009) 016 [arXiv:0901.2926] [INSPIRE].
A. Ibarra, S. Lopez Gehler and M. Pato, Dark matter constraints from box-shaped gamma-ray features, JCAP 07 (2012) 043 [arXiv:1205.0007] [INSPIRE].
M. Abdullah, A. DiFranzo, A. Rajaraman, T.M.P. Tait, P. Tanedo and A.M. Wijangco, Hidden on-shell mediators for the Galactic Center γ-ray excess, Phys. Rev. D 90 (2014) 035004 [arXiv:1404.6528] [INSPIRE].
J.M. Cline, G. Dupuis, Z. Liu and W. Xue, The windows for kinetically mixed Z’-mediated dark matter and the galactic center gamma ray excess, JHEP 08 (2014) 131 [arXiv:1405.7691] [INSPIRE].
P. Agrawal, B. Batell, P.J. Fox and R. Harnik, WIMPs at the Galactic Center, JCAP 05 (2015) 011 [arXiv:1411.2592] [INSPIRE].
J.M. Cline, G. Dupuis, Z. Liu and W. Xue, Multimediator models for the galactic center gamma ray excess, Phys. Rev. D 91 (2015) 115010 [arXiv:1503.08213] [INSPIRE].
D. Feldman, Z. Liu and P. Nath, PAMELA Positron Excess as a Signal from the Hidden Sector, Phys. Rev. D 79 (2009) 063509 [arXiv:0810.5762] [INSPIRE].
H.E.S.S. collaboration, Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S, Phys. Rev. Lett. 106 (2011) 161301 [arXiv:1103.3266] [INSPIRE].
H.E.S.S. collaboration, Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S, Phys. Rev. Lett. 117 (2016) 111301 [arXiv:1607.08142] [INSPIRE].
S. Profumo, F.S. Queiroz, J. Silk and C. Siqueira, Searching for Secluded Dark Matter with H.E.S.S., Fermi-LAT and Planck, JCAP 03 (2018) 010 [arXiv:1711.03133] [INSPIRE].
Fermi-LAT collaboration, The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV, Astrophys. J. 799 (2015) 86 [arXiv:1410.3696] [INSPIRE].
AMS collaboration, High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-500 GeV with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 113 (2014) 121101 [INSPIRE].
AMS collaboration, Antiproton Flux, Antiproton-to-Proton Flux Ratio and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station, Phys. Rev. Lett. 117 (2016) 091103 [INSPIRE].
ATLAS collaboration, Search for new high-mass phenomena in the dilepton final state using 36 fb −1 of proton-proton collision data at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 182 [arXiv:1707.02424] [INSPIRE].
Lei Zhang, private communication.
S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].
T.R. Slatyer, The Sommerfeld enhancement for dark matter with an excited state, JCAP 02 (2010) 028 [arXiv:0910.5713] [INSPIRE].
L. Pieri, J. Lavalle, G. Bertone and E. Branchini, Implications of High-Resolution Simulations on Indirect Dark Matter Searches, Phys. Rev. D 83 (2011) 023518 [arXiv:0908.0195] [INSPIRE].
G. Bertone, D. Hooper and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [INSPIRE].
J. Lavalle, Q. Yuan, D. Maurin and X.J. Bi, Full Calculation of Clumpiness Boost factors for Antimatter Cosmic Rays in the light of Lambda-CDM N-body simulation results. Abandoning hope in clumpiness enhancement?, Astron. Astrophys. 479 (2008) 427 [arXiv:0709.3634] [INSPIRE].
D. Maurin, R. Taillet and C. Combet, Approximate formulae for exotic GCR anti-protons and anti-deuterons: Fluxes and astrophysical uncertainties, [astro-ph/0609522] [INSPIRE].
L.C. Tan and L.K. Ng, Calculation of the equilibrium anti-proton spectrum, J. Phys. G 9 (1983) 227 [INSPIRE].
J. Hisano, S. Matsumoto, O. Saito and M. Senami, Heavy wino-like neutralino dark matter annihilation into antiparticles, Phys. Rev. D 73 (2006) 055004 [hep-ph/0511118] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1902.04916
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Liu, X., Liu, Z. & Su, Y. Two-mediator dark matter models and cosmic electron excess. J. High Energ. Phys. 2019, 109 (2019). https://doi.org/10.1007/JHEP06(2019)109
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2019)109