Abstract
We perform real-time hydrodynamical simulations of the growth of bubbles formed during cosmological first-order phase transitions under the assumption of local thermal equilibrium. We confirm that pure hydrodynamic backreaction can lead to steady-state expansion and that bubble-wall velocity in such case agrees very well with the analytical estimates. However, this is not the generic outcome. Instead, it is much more common to observe runaways, as the early-stage dynamics right after the nucleation allow the bubble walls to achieve supersonic velocities before the heated fluid shell in front of the bubble is formed. This effect is not captured by other methods of calculation of the bubble-wall velocity which assume stationary solutions to exist at all times and would have a crucial impact on the possible generation of both baryon asymmetry and gravitational wave signals.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36 [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci. 43 (1993) 27 [hep-ph/9302210] [INSPIRE].
V.A. Rubakov and M.E. Shaposhnikov, Electroweak baryon number nonconservation in the early universe and in high-energy collisions, Usp. Fiz. Nauk 166 (1996) 493 [hep-ph/9603208] [INSPIRE].
D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012) 125003 [arXiv:1206.2942] [INSPIRE].
C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].
C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with LISA: an update, JCAP 03 (2020) 024 [arXiv:1910.13125] [INSPIRE].
AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [arXiv:1908.00802] [INSPIRE].
L. Badurina et al., Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter, Phil. Trans. A. Math. Phys. Eng. Sci. 380 (2021) 20210060 [arXiv:2108.02468] [INSPIRE].
LISA Cosmology Working Group collaboration, Cosmology with the Laser Interferometer Space Antenna, Living Rev. Rel. 26 (2023) 5 [arXiv:2204.05434] [INSPIRE].
M. Colpi et al., LISA Definition Study Report, arXiv:2402.07571 [INSPIRE].
D. Bodeker and G.D. Moore, Electroweak Bubble Wall Speed Limit, JCAP 05 (2017) 025 [arXiv:1703.08215] [INSPIRE].
A. Azatov and M. Vanvlasselaer, Bubble wall velocity: heavy physics effects, JCAP 01 (2021) 058 [arXiv:2010.02590] [INSPIRE].
Y. Gouttenoire, R. Jinno and F. Sala, Friction pressure on relativistic bubble walls, JHEP 05 (2022) 004 [arXiv:2112.07686] [INSPIRE].
S. Höche et al., Towards an all-orders calculation of the electroweak bubble wall velocity, JCAP 03 (2021) 009 [arXiv:2007.10343] [INSPIRE].
G.D. Moore and T. Prokopec, Bubble wall velocity in a first order electroweak phase transition, Phys. Rev. Lett. 75 (1995) 777 [hep-ph/9503296] [INSPIRE].
G.D. Moore and T. Prokopec, How fast can the wall move? A Study of the electroweak phase transition dynamics, Phys. Rev. D 52 (1995) 7182 [hep-ph/9506475] [INSPIRE].
G.C. Dorsch and D.A. Pinto, Bubble wall velocities with an extended fluid Ansatz, JCAP 04 (2024) 027 [arXiv:2312.02354] [INSPIRE].
J.M. Cline and K. Kainulainen, Electroweak baryogenesis at high bubble wall velocities, Phys. Rev. D 101 (2020) 063525 [arXiv:2001.00568] [INSPIRE].
B. Laurent and J.M. Cline, Fluid equations for fast-moving electroweak bubble walls, Phys. Rev. D 102 (2020) 063516 [arXiv:2007.10935] [INSPIRE].
G.C. Dorsch, S.J. Huber and T. Konstandin, On the wall velocity dependence of electroweak baryogenesis, JCAP 08 (2021) 020 [arXiv:2106.06547] [INSPIRE].
G.C. Dorsch, S.J. Huber and T. Konstandin, A sonic boom in bubble wall friction, JCAP 04 (2022) 010 [arXiv:2112.12548] [INSPIRE].
J.M. Cline et al., Baryogenesis and gravity waves from a UV-completed electroweak phase transition, Phys. Rev. D 103 (2021) 123529 [arXiv:2102.12490] [INSPIRE].
J.M. Cline and B. Laurent, Electroweak baryogenesis from light fermion sources: A critical study, Phys. Rev. D 104 (2021) 083507 [arXiv:2108.04249] [INSPIRE].
M. Lewicki, M. Merchand and M. Zych, Electroweak bubble wall expansion: gravitational waves and baryogenesis in Standard Model-like thermal plasma, JHEP 02 (2022) 017 [arXiv:2111.02393] [INSPIRE].
B. Laurent and J.M. Cline, First principles determination of bubble wall velocity, Phys. Rev. D 106 (2022) 023501 [arXiv:2204.13120] [INSPIRE].
J. Ellis et al., The scalar singlet extension of the Standard Model: gravitational waves versus baryogenesis, JHEP 01 (2023) 093 [arXiv:2210.16305] [INSPIRE].
H. Kurki-Suonio and M. Laine, On bubble growth and droplet decay in cosmological phase transitions, Phys. Rev. D 54 (1996) 7163 [hep-ph/9512202] [INSPIRE].
M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Gravitational waves from the sound of a first order phase transition, Phys. Rev. Lett. 112 (2014) 041301 [arXiv:1304.2433] [INSPIRE].
M. Barroso Mancha, T. Prokopec and B. Swiezewska, Field-theoretic derivation of bubble-wall force, JHEP 01 (2021) 070 [arXiv:2005.10875] [INSPIRE].
W.-Y. Ai, B. Garbrecht and C. Tamarit, Bubble wall velocities in local equilibrium, JCAP 03 (2022) 015 [arXiv:2109.13710] [INSPIRE].
W.-Y. Ai, B. Laurent and J. van de Vis, Model-independent bubble wall velocities in local thermal equilibrium, JCAP 07 (2023) 002 [arXiv:2303.10171] [INSPIRE].
J.R. Espinosa, T. Konstandin, J.M. No and G. Servant, Energy Budget of Cosmological First-order Phase Transitions, JCAP 06 (2010) 028 [arXiv:1004.4187] [INSPIRE].
J. McDonald, Electroweak baryogenesis and dark matter via a gauge singlet scalar, Phys. Lett. B 323 (1994) 339 [INSPIRE].
J.R. Espinosa and M. Quiros, The electroweak phase transition with a singlet, Phys. Lett. B 305 (1993) 98 [hep-ph/9301285] [INSPIRE].
J.R. Espinosa and M. Quiros, Novel Effects in Electroweak Breaking from a Hidden Sector, Phys. Rev. D 76 (2007) 076004 [hep-ph/0701145] [INSPIRE].
S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [INSPIRE].
J.R. Espinosa, T. Konstandin and F. Riva, Strong Electroweak Phase Transitions in the Standard Model with a Singlet, Nucl. Phys. B 854 (2012) 592 [arXiv:1107.5441] [INSPIRE].
V. Barger, D.J.H. Chung, A.J. Long and L.-T. Wang, Strongly First Order Phase Transitions Near an Enhanced Discrete Symmetry Point, Phys. Lett. B 710 (2012) 1 [arXiv:1112.5460] [INSPIRE].
J.M. Cline and K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs, JCAP 01 (2013) 012 [arXiv:1210.4196] [INSPIRE].
T. Alanne, K. Tuominen and V. Vaskonen, Strong phase transition, dark matter and vacuum stability from simple hidden sectors, Nucl. Phys. B 889 (2014) 692 [arXiv:1407.0688] [INSPIRE].
D. Curtin, P. Meade and C.-T. Yu, Testing Electroweak Baryogenesis with Future Colliders, JHEP 11 (2014) 127 [arXiv:1409.0005] [INSPIRE].
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
G. Kurup and M. Perelstein, Dynamics of Electroweak Phase Transition In Singlet-Scalar Extension of the Standard Model, Phys. Rev. D 96 (2017) 015036 [arXiv:1704.03381] [INSPIRE].
A. Beniwal et al., Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].
A. Beniwal, M. Lewicki, M. White and A.G. Williams, Gravitational waves and electroweak baryogenesis in a global study of the extended scalar singlet model, JHEP 02 (2019) 183 [arXiv:1810.02380] [INSPIRE].
L. Niemi, P. Schicho and T.V.I. Tenkanen, Singlet-assisted electroweak phase transition at two loops, Phys. Rev. D 103 (2021) 115035 [arXiv:2103.07467] [INSPIRE].
S.R. Coleman, The fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].
C.G. Callan Jr. and S.R. Coleman, The fate of the False Vacuum. 2. First Quantum Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].
A.D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications, Phys. Lett. B 100 (1981) 37 [INSPIRE].
A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983) 421 [Erratum ibid. 223 (1983) 544] [INSPIRE].
J. Ellis, M. Lewicki and J.M. No, On the Maximal Strength of a First-Order Electroweak Phase Transition and its Gravitational Wave Signal, JCAP 04 (2019) 003 [arXiv:1809.08242] [INSPIRE].
M. Hindmarsh, S.J. Huber, K. Rummukainen and D.J. Weir, Shape of the acoustic gravitational wave power spectrum from a first order phase transition, Phys. Rev. D 96 (2017) 103520 [Erratum ibid. 101 (2020) 089902] [arXiv:1704.05871] [INSPIRE].
F. Giese, T. Konstandin and J. van de Vis, Model-independent energy budget of cosmological first-order phase transitions—A sound argument to go beyond the bag model, JCAP 07 (2020) 057 [arXiv:2004.06995] [INSPIRE].
F. Giese, T. Konstandin, K. Schmitz and J. van de Vis, Model-independent energy budget for LISA, JCAP 01 (2021) 072 [arXiv:2010.09744] [INSPIRE].
T. Konstandin and J.M. No, Hydrodynamic obstruction to bubble expansion, JCAP 02 (2011) 008 [arXiv:1011.3735] [INSPIRE].
A. Friedlander, I. Banta, J.M. Cline and D. Tucker-Smith, Wall speed and shape in singlet-assisted strong electroweak phase transitions, Phys. Rev. D 103 (2021) 055020 [arXiv:2009.14295] [INSPIRE].
C.L. Wainwright, CosmoTransitions: Computing Cosmological Phase Transition Temperatures and Bubble Profiles with Multiple Fields, Comput. Phys. Commun. 183 (2012) 2006 [arXiv:1109.4189] [INSPIRE].
T. Krajewski, M. Lewicki and M. Zych, Hydrodynamical constraints on the bubble wall velocity, Phys. Rev. D 108 (2023) 103523 [arXiv:2303.18216] [INSPIRE].
S. Balaji, M. Spannowsky and C. Tamarit, Cosmological bubble friction in local equilibrium, JCAP 03 (2021) 051 [arXiv:2010.08013] [INSPIRE].
R. Jinno, T. Konstandin, H. Rubira and I. Stomberg, Higgsless simulations of cosmological phase transitions and gravitational waves, JCAP 02 (2023) 011 [arXiv:2209.04369] [INSPIRE].
J.P. Boris and D.L. Book, Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works, J. Comput. Phys. 11 (1973) 38 [INSPIRE].
S.T. Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys. 31 (1979) 335.
D. Kuzmin and S. Turek, Flux Correction Tools for Finite Elements, J. Comput. Phys. 175 (2002) 525.
D. Kuzmin, M. Möller and S. Turek, Multidimensional FEM-FCT schemes for arbitrary time stepping, Int. J. Numer. Meth. Fluids 42 (2003) 265.
M. Möller, Algebraic flux correction for nonconforming finite element discretizations of scalar transport problems, Computing 95 (2013) 425.
D. Kuzmin, A new perspective on flux and slope limiting in discontinuous Galerkin methods for hyperbolic conservation laws, Comput. Methods Appl. Mech. Eng. 373 (2021) 113569.
S.T. Zalesak, The Design of Flux-Corrected Transport (FCT) Algorithms for Structured Grids, in D. Kuzmin, R. Löhner and S. Turek, eds., Flux-Corrected Transport: Principles, Algorithms, and Applications, Springer Netherlands (2012), p. 23–65 [https://doi.org/10.1007/978-94-007-4038-9_2].
E.E. Kunhardt and C. Wu, Towards a more accurate flux corrected transport algorithm, J. Comput. Phys. 68 (1987) 127.
Acknowledgments
M.Z. would like to thank the organisers of the workshop “How fast does the bubble grow?” at DESY, Hamburg for their hospitality. This work was supported by the Polish National Agency for Academic Exchange within Polish Returns Programme under agreement PPN/PPO/2020/1/00013/U/00001 and the Polish National Science Center grant 2018/31/D/ST2/02048. T.K. was supported by grant 2019/33/B/ST9/01564 from the Polish National Science Centre.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2402.15408
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Krajewski, T., Lewicki, M. & Zych, M. Bubble-wall velocity in local thermal equilibrium: hydrodynamical simulations vs analytical treatment. J. High Energ. Phys. 2024, 11 (2024). https://doi.org/10.1007/JHEP05(2024)011
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2024)011