Abstract
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) is taking data at the Angra 2 nuclear reactor with the aim of detecting the coherent elastic scattering of reactor antineutrinos with silicon nuclei using charge-coupled devices (CCDs). In 2019 the experiment operated with a hardware binning applied to the readout stage, leading to lower levels of readout noise and improving the detection threshold down to 50 eV. The results of the analysis of 2019 data are reported here, corresponding to the detector array of 8 CCDs with a fiducial mass of 36.2 g and a total exposure of 2.2 kg-days. The difference between the reactor-on and reactor-off spectra shows no excess at low energies and yields upper limits at 95% confidence level for the neutrino interaction rates. In the lowest-energy range, 50 − 180 eV, the expected limit stands at 34 (39) times the standard model prediction, while the observed limit is 66 (75) times the standard model prediction with Sarkis (Chavarria) quenching factors.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D.Z. Freedman, Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current, Phys. Rev. D 9 (1974) 1389 [INSPIRE].
D.K. Papoulias, T.S. Kosmas and Y. Kuno, Recent probes of standard and non-standard neutrino physics with nuclei, Front. in Phys. 7 (2019) 191 [arXiv:1911.00916] [INSPIRE].
COHERENT collaboration, Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
COHERENT collaboration, First Measurement of Coherent Elastic Neutrino-Nucleus Scattering on Argon, Phys. Rev. Lett. 126 (2021) 012002 [arXiv:2003.10630] [INSPIRE].
TEXONO collaboration, Production of electron neutrinos at nuclear power reactors and the prospects for neutrino physics, Phys. Rev. D 72 (2005) 012006 [hep-ex/0502001] [INSPIRE].
O.G. Miranda, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing neutrino transition magnetic moments with coherent elastic neutrino-nucleus scattering, JHEP 07 (2019) 103 [arXiv:1905.03750] [INSPIRE].
A. Parada, Constraints on neutrino electric millicharge from experiments of elastic neutrino-electron interaction and future experimental proposals involving coherent elastic neutrino-nucleus scattering, Adv. High Energy Phys. 2020 (2020) 5908904 [arXiv:1907.04942] [INSPIRE].
T.S. Kosmas, D.K. Papoulias, M. Tórtola and J.W.F. Valle, Probing light sterile neutrino signatures at reactor and Spallation Neutron Source neutrino experiments, Phys. Rev. D 96 (2017) 063013 [arXiv:1703.00054] [INSPIRE].
B.C. Cañas, E.A. Garcés, O.G. Miranda and A. Parada, Future perspectives for a weak mixing angle measurement in coherent elastic neutrino nucleus scattering experiments, Phys. Lett. B 784 (2018) 159 [arXiv:1806.01310] [INSPIRE].
G. Fernandez-Moroni, P.A.N. Machado, I. Martinez-Soler, Y.F. Perez-Gonzalez, D. Rodrigues and S. Rosauro-Alcaraz, The physics potential of a reactor neutrino experiment with Skipper CCDs: Measuring the weak mixing angle, JHEP 03 (2021) 186 [arXiv:2009.10741] [INSPIRE].
P.S. Bhupal Dev et al., Neutrino Non-Standard Interactions: A Status Report, SciPost Phys. Proc. 2 (2019) 001 [arXiv:1907.00991] [INSPIRE].
Y. Farzan, M. Lindner, W. Rodejohann and X.-J. Xu, Probing neutrino coupling to a light scalar with coherent neutrino scattering, JHEP 05 (2018) 066 [arXiv:1802.05171] [INSPIRE].
CONUS collaboration, Constraints on Elastic Neutrino Nucleus Scattering in the Fully Coherent Regime from the CONUS Experiment, Phys. Rev. Lett. 126 (2021) 041804 [arXiv:2011.00210] [INSPIRE].
MINER collaboration, Background Studies for the MINER Coherent Neutrino Scattering Reactor Experiment, Nucl. Instrum. Meth. A 853 (2017) 53 [arXiv:1609.02066] [INSPIRE].
RED collaboration, Prospects for observation of neutrino-nuclear neutral current coherent scattering with two-phase Xenon emission detector, 2013 JINST 8 P10023 [arXiv:1212.1938] [INSPIRE].
CONNIE collaboration, Exploring low-energy neutrino physics with the Coherent Neutrino Nucleus Interaction Experiment, Phys. Rev. D 100 (2019) 092005 [arXiv:1906.02200] [INSPIRE].
CONNIE collaboration, Search for light mediators in the low-energy data of the CONNIE reactor neutrino experiment, JHEP 04 (2020) 054 [arXiv:1910.04951] [INSPIRE].
CONNIE collaboration, Results of the Engineering Run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE), 2016 JINST 11 P07024 [arXiv:1604.01343] [INSPIRE].
LBNL Micro Systems Laboratory, http://engineering.lbl.gov/microsystems-laboratory/.
DES collaboration, The Dark Energy Camera, Astron. J. 150 (2015) 150 [arXiv:1504.02900] [INSPIRE].
DESI collaboration, Overview of the Dark Energy Spectroscopic Instrument, Proc. SPIE Int. Soc. Opt. Eng. 10702 (2018) 107021F [arXiv:1807.09287] [INSPIRE].
M.S. Haro, G. Fernandez Moroni and J. Tiffenberg, Studies on Small Charge Packet Transport in High-Resistivity Fully Depleted CCDs, IEEE Trans. Electron Devices 67 (2020) 1993.
P. Du, D. Egana-Ugrinovic, R. Essig and M. Sholapurkar, Sources of Low-Energy Events in Low-Threshold Dark-Matter and Neutrino Detectors, Phys. Rev. X 12 (2022) 011009 [arXiv:2011.13939] [INSPIRE].
SENSEI collaboration, SENSEI: Characterization of Single-Electron Events Using a Skipper Charge-Coupled Device, Phys. Rev. Applied 17 (2022) 014022 [arXiv:2106.08347] [INSPIRE].
D.A. Dickey and W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root, J. American Stat. Assoc. 74 (1979) 427.
J. Janesick, Scientific Charge-coupled Devices, Press Monograph Series, Society of Photo Optical, U.S.A. (2001), [DOI].
G. Fernandez-Moroni, K. Andersson, A. Botti, J. Estrada, D. Rodrigues and J. Tiffenberg, Charge-Collection Efficiency in Back-Illuminated Charge-Coupled Devices, Phys. Rev. Applied 15 (2021) 064026 [arXiv:2007.04201] [INSPIRE].
A.E. Chavarria et al., Measurement of the ionization produced by sub-keV silicon nuclear recoils in a CCD dark matter detector, Phys. Rev. D 94 (2016) 082007 [arXiv:1608.00957] [INSPIRE].
Y. Sarkis, A. Aguilar-Arevalo and J.C. D’Olivo, Study of the ionization efficiency for nuclear recoils in pure crystals, Phys. Rev. D 101 (2020) 102001 [arXiv:2001.06503] [INSPIRE].
P. Vogel and J. Engel, Neutrino Electromagnetic Form-Factors, Phys. Rev. D 39 (1989) 3378 [INSPIRE].
TEXONO collaboration, A Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station, Phys. Rev. D 75 (2007) 012001 [hep-ex/0605006] [INSPIRE].
Y. Sarkis, A. Aguilar-Arevalo and J.C. D’Olivo, A Study of the Ionization Efficiency for Nuclear Recoils in Pure Crystals, Phys. Atom. Nucl. 84 (2021) 590.
C. Giunti, Y.F. Li, C.A. Ternes and Z. Xin, Reactor antineutrino anomaly in light of recent flux model refinements, Phys. Lett. B 829 (2022) 137054 [arXiv:2110.06820] [INSPIRE].
J. Hakenmüller et al., Neutron-induced background in the CONUS experiment, Eur. Phys. J. C 79 (2019) 699 [arXiv:1903.09269] [INSPIRE].
SENSEI collaboration, Single-electron and single-photon sensitivity with a silicon Skipper CCD, Phys. Rev. Lett. 119 (2017) 131802 [arXiv:1706.00028] [INSPIRE].
G.I. Cancelo et al., Low threshold acquisition controller for Skipper charge-coupled devices, J. Astron. Telesc. Instrum. Syst. 7 (2021) 015001.
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2110.13033
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
The CONNIE collaboration., Aguilar-Arevalo, A., Bernal, J. et al. Search for coherent elastic neutrino-nucleus scattering at a nuclear reactor with CONNIE 2019 data. J. High Energ. Phys. 2022, 17 (2022). https://doi.org/10.1007/JHEP05(2022)017
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2022)017