[go: up one dir, main page]

Skip to main content

Application of CRISPR-Cas9 Technology in Fish

  • Chapter
  • First Online:
Biotechnological Tools in Fisheries and Aquatic Health Management
  • 453 Accesses

Abstract

CRISPR/Cas9-based genome editing allows efficient and targeted enhancement of important aquaculture traits and will probably be the solution to the many present problems in the aquaculture industry. CRISPR/Cas9 has its own advantage over previously used genome editing platform like zinc finger nuclease (ZNF), meganuclease and transcription activator-like effector nuclease (TALEN) in terms of cost effectiveness, designing of construct, ease of delivery of construct and minimising the off-target modification. CRISPR/Cas9-based modification of growth-associated genes in important aquaculture species like red sea bream, channel catfish, common carp, etc. has shown promising result. Successful modifications were done also in grass carp, channel cat fish and zebra fish for acquiring disease resistance and stress tolerance. Apart from the growth- and disease-related traits, several studies were done to improve flesh quality, improve pigmentation, etc. in fish as well as in crustaceans. Besides that, knockout study with CRISPR/Cas9 system revealed function of many genes which were previously unknown. Highly efficient techniques for disease diagnosis are developed for detection of viral DNA/RNA in host cell based on CRISPR/Cas9-based system. In spite of wide-scale application of CRISPR/Cas9 system, there are a few challenges it may face in the genome modifications in fish which will be required to be resolved in order to achieve the full potential benefits of this wonderful tool of nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bian C, Huang Y, Li J, You X, Yi Y, Ge W, Shi Q (2019) Divergence, evolution and adaptation in ray-finned fish genomes. Sci China Life Sci 62(8):1003–1018

    Article  PubMed  Google Scholar 

  • Blix TB, Dalmo RA, Wargelius A, Myhr AI (2021) Genome editing on finfish: Current status and implications for sustainability. Rev Aquac 13(4):2344–2363

    Article  Google Scholar 

  • Cai X, Zhang D, Wang J, Liu X, Ouyang G, Xiao W (2018) Deletion of the fih gene encoding an inhibitor of hypoxia-inducible factors increases hypoxia tolerance in zebrafish. J Biol Chem 293(40):15370–15380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canonne J, Rivas S (2012) Bacterial effectors target the plant cell nucleus to subvert host transcription. Plant Signal Behav 7(2):217–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll KJ, Makarewich CA, McAnally J, Anderson DM, Zentilin L, Liu N, Giacca M, Bassel-Duby R, Olson EN (2016) A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9. Proc Natl Acad Sci 113(2):338–343

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Wang W, Tian Z, Dong Y, Dong T, Zhu H, Zhu Z, Hu H, Hu W (2018) Efficient gene transfer and gene editing in sterlet (Acipenser ruthenus). Front Genet 9:117

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu L, Li J, Liu Y, Cheng CH (2015) Gonadotropin signaling in zebrafish ovary and testis development: insights from gene knockout study. Mol Endocrinol 29(12):1743–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuang CK, Chen CH, Huang CL, Su YH, Peng SH, Lin TY, Tai HC, Yang TS, Tu CF (2017) Generation of GGTA1 mutant pigs by direct pronuclear microinjection of CRISPR/Cas9 plasmid vectors. Anim Biotechnol 28(3):174–181

    Article  CAS  PubMed  Google Scholar 

  • Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, Menchaca A (2015) Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One 10(8):e0136690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Wang H, Jin X, Wang H, He J, Liu M, Yin Z, Sun Y, Lou Q (2015) Depletion of suppressor of cytokine signaling-1a causes hepatic steatosis and insulin resistance in zebrafish. Am J Phys Endocrinol Metab 308(10):E849–E859

    Article  Google Scholar 

  • Du J, Zhang D, Zhang W, Ouyang G, Wang J, Liu X, Li S, Ji W, Liu W, Xiao W (2015) pVHL negatively regulates antiviral signaling by targeting MAVS for proteasomal degradation. J Immunol 195(4):1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Ebina H, Misawa N, Kanemura Y, Koyanagi Y (2013) Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3(1):2510

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H (2019) Plants developed by new genetic modification techniques—comparison of existing regulatory frameworks in the EU and non-EU countries. Front Bioeng Biotechnol 7:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Edvardsen RB, Leininger S, Kleppe L, Skaftnesmo KO, Wargelius A (2014) Targeted mutagenesis in Atlantic salmon (Salmo salar L.) using the CRISPR/Cas9 system induces complete knockout individuals in the F0 generation. PLoS One 9(9):e108622

    Article  PubMed  PubMed Central  Google Scholar 

  • Elaswad A, Khalil K, Cline D, Page-McCaw P, Chen W, Michel M, Cone R, Dunham R (2018) Microinjection of CRISPR/Cas9 protein into channel catfish, Ictalurus punctatus, embryos for gene editing. J Vis Exp 131:e56275

    Google Scholar 

  • Guan Y, Ma Y, Li Q, Sun Z, Ma L, Wu L, Wang L, Zeng L, Shao Y, Chen Y, Ma N (2016) CRISPR/Cas9-mediated somatic correction of a novel coagulator factor IX gene mutation ameliorates hemophilia in mouse. EMBO Mol Med 8(5):477–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallerman E (2021) Genome editing in cultured fishes. CABI Agric Biosci 2(1):1–19

    Article  Google Scholar 

  • Hartenian E, Doench JG (2015) Genetic screens and functional genomics using CRISPR/Cas9 technology. FEBS J 282(8):1383–1393

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Yamashita Y, Takemoto T (2016) Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol 418(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • He L, Wang H, Luo L, Li Y, Huang R, Liao L, Zhu Z, Wang Y (2017) Bid-deficient fish delay grass carp reovirus (GCRV) replication and attenuate GCRV-triggered apoptosis. Oncotarget 8(44):76408

    Article  PubMed  PubMed Central  Google Scholar 

  • Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M, Abe Y, Hatada I (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4(1):4513

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung SS, Chrysostomou V, Li F, Lim JK, Wang JH, Powell JE, Tu L, Daniszewski M, Lo C, Wong RC, Crowston JG (2016) AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Investig Ophthalmol Vis Sci 57(7):3470–3476

    Article  CAS  Google Scholar 

  • Jao LE, Wente SR, Chen W (2013) Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci 110(34):13904–13909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang HJ, Rong TAN, Min JIN, Jing YIN, Gao ZX, Li HB, Shi DY, Zhou SQ, Chen TJ, Dong YANG, Li JW (2022) Visual detection of Vibrio parahaemolyticus using combined CRISPR/Cas12a and recombinase polymerase amplification. Biomed Environ Sci 35(6):518–527

    CAS  PubMed  Google Scholar 

  • Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA (2014) Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res 42(19):e147

    Article  PubMed  PubMed Central  Google Scholar 

  • Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2019) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 14(10):2986–3012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K (2017) Generation of myostatin gene-edited channel catfish (Ictalurus punctatus) via zygote injection of CRISPR/Cas9 system. Sci Rep 7(1):1–12

    Article  Google Scholar 

  • Kimura T, Nagao Y, Hashimoto H, Yamamoto-Shiraishi YI, Yamamoto S, Yabe T, Takada S, Kinoshita M, Kuroiwa A, Naruse K (2014) Leucophores are similar to xanthophores in their specification and differentiation processes in medaka. Proc Natl Acad Sci 111(20):7343–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto K, Washio Y, Yoshiura Y, Toyoda A, Ueno T, Fukuyama H, Kato K, Kinoshita M (2018) Production of a breed of red sea bream Pagrus major with an increase of skeletal muscle mass and reduced body length by genome editing with CRISPR/Cas9. Aquaculture 495:415–427

    Article  CAS  Google Scholar 

  • Lamason RL, Mohideen MAP, Mest JR, Wong AC, Norton HL, Aros MC, Jurynec MJ, Mao X, Humphreville VR, Humbert JE, Sinha S (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310(5755):1782–1786

    Article  CAS  PubMed  Google Scholar 

  • Lau ESW, Zhang Z, Qin M, Ge W (2016) Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6(1):1–14

    Article  Google Scholar 

  • Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, Mackley VA, Chang K, Rao A, Skinner C, Shobha T (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng 1(11):889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, He ZY, Wei XW, Gao GP, Wei YQ (2015) Challenges in CRISPR/CAS9 delivery: potential roles of nonviral vectors. Hum Gene Ther 26(7):452–462

    Article  CAS  PubMed  Google Scholar 

  • Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y (2015) A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile tilapia, Oreochromis niloticus. PLoS Genet 11(11):e1005678

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Meng Q, Qi J, Hu L, Huang J, Zhang Y, Yang J, Sun J (2022) Microinjection-based CRISPR/Cas9 mutagenesis in the decapoda crustaceans Neocaridina heteropoda and Eriocheir sinensis. J Exp Biol 225(6):243702

    Article  Google Scholar 

  • Lino CA, Harper JC, Carney JP, Timlin JA (2018) Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25(1):1234–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Qi Y, Liang Q, Song J, Liu J, Li W, Shu Y, Tao M, Zhang C, Qin Q, Wang J (2019) Targeted disruption of tyrosinase causes melanin reduction in Carassius auratus cuvieri and its hybrid progeny. Sci China Life Sci 62(9):1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Lone BA, Karna SKL, Ahmad F, Shahi N, Pokharel YR (2018) CRISPR/Cas9 system: a bacterial tailor for genomic engineering. Genet Res Int 2018:3797214

    PubMed  PubMed Central  Google Scholar 

  • Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Liu Y, Chen J, Xia X, Cao M, Cheng B, Wang X, Gong W, Qiu C, Zhang Y, Ki Cheng CH (2015) Direct production of XYDMY−sex reversal female medaka (Oryzias latipes) by embryo microinjection of TALENs. Sci Rep 5(1):1–15

    Google Scholar 

  • Luo M, Wang J, Dong Z, Wang C, Lu G (2022) CRISPR-Cas9 sgRNA design and outcome assessment: bioinformatics tools and aquaculture applications. Aquac Fish 7(2):121–130

    Article  Google Scholar 

  • Ma J, Fan Y, Zhou Y, Liu W, Jiang N, Zhang J, Zeng L (2018) Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish Shellfish Immunol 76:206–215

    Article  CAS  PubMed  Google Scholar 

  • Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han YC, Ogrodowski P, Crippa A, Rekhtman N, de Stanchina E, Lowe SW (2014) In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature 516(7531):423–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJ, Charpentier E, Cheng D, Haft DH, Horvath P, Moineau S (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18(2):67–83

    Article  CAS  PubMed  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat Med 21(3):256–262

    Article  CAS  PubMed  Google Scholar 

  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, Gregory PD (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25(7):778–785

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Zhang S, Kos P, Xiong H, Zhou K, Perelman SS, Zhu H, Siegwart DJ (2017) Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew Chem 129(4):1079–1083

    Article  Google Scholar 

  • Molcho J, Manor R, Shamsian M, Sudarshan G, Ofir R, Parker D, Weil S, Wattad H, Hayun E, Levy T, Aflalo ED (2022) On genome editing in embryos and cells of the freshwater prawn Macrobrachium rosenbergii. Aquaculture 2022:738391

    Article  Google Scholar 

  • Mout R, Rotello VM (2017) Cytosolic and nuclear delivery of CRISPR/Cas9-ribonucleoprotein for gene editing using arginine functionalized gold nanoparticles. Bio-protocol 7(20):e2586

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasawa K, Ishida M, Octavera A, Kusano K, Kezuka F, Kitano T, Yoshiura Y, Yoshizaki G (2019) Novel method for mass producing genetically sterile fish from surrogate broodstock via spermatogonial transplantation. Biol Reprod 100(2):535–546

    Article  PubMed  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 6(22):19–40

    Article  CAS  Google Scholar 

  • Niu P, Zhong Z, Wang M, Huang G, Xu S, Hou Y, Yan Y, Wang H (2017) Zinc finger transcription factor Sp7/Osterix acts on bone formation and regulates col10a1a expression in zebrafish. Sci Bull 62(3):174–184

    Article  CAS  Google Scholar 

  • Ousterout DG, Kabadi AM, Thakore PI, Majoros WH, Reddy TE, Gersbach CA (2015) Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun 6(1):6244

    Article  CAS  PubMed  Google Scholar 

  • Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601):125–129

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak V, Ramirez CL, Joung JK, Liu DR (2011) Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods 8(9):765–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin W, Dion SL, Kutny PM, Zhang Y, Cheng AW, Jillette NL, Malhotra A, Geurts AM, Chen YG, Wang H (2015) Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 200(2):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M (2017) Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 7(1):42661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roehm PC, Shekarabi M, Wollebo HS, Bellizzi A, He L, Salkind J, Khalili K (2016) Inhibition of HSV-1 replication by gene editing strategy. Sci Rep 6(1):23146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Kumar V, Behera BK, Parhi J, Mohapatra S, Chakraborty T, Das BK (2022) CRISPR/Cas genome editing—can it become a game changer in future fisheries sector? Front Mar Sci 9:924475

    Article  Google Scholar 

  • Sato M, Koriyama M, Watanabe S, Ohtsuka M, Sakurai T, Inada E, Saitoh I, Nakamura S, Miyoshi K (2015) Direct injection of CRISPR/Cas9-related mRNA into cytoplasm of parthenogenetically activated porcine oocytes causes frequent mosaicism for indel mutations. Int J Mol Sci 16(8):17838–17856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segev-Hadar A, Slosman T, Rozen A, Sherman A, Cnaani A, Biran J (2021) Genome editing using the CRISPR-Cas9 system to generate a solid-red germline of Nile tilapia (Oreochromis niloticus). The CRISPR J 4(4):583–594

    Article  CAS  PubMed  Google Scholar 

  • Simora RMC, Xing D, Bangs MR, Wang W, Ma X, Su B, Khan MG, Qin Z, Lu C, Alston V, Hettiarachchi D (2020) CRISPR/Cas9-mediated knock-in of alligator cathelicidin gene in a non-coding region of channel catfish genome. Sci Rep 10(1):1–14

    Article  Google Scholar 

  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D (2000) Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 28(17):3361–3369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spicer OS, Wong TT, Zmora N, Zohar Y (2016) Targeted mutagenesis of the hypophysiotropic Gnrh3 in zebrafish (Danio rerio) reveals no effects on reproductive performance. PLoS One 11(6):e0158141

    Article  PubMed  PubMed Central  Google Scholar 

  • Swiech L, Heidenreich M, Banerjee A, Habib N, Li Y, Trombetta J, Sur M, Zhang F (2015) In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 33(1):102–106

    Article  CAS  PubMed  Google Scholar 

  • Takahashi A, Kanda S, Abe T, Oka Y (2016) Evolution of the hypothalamic-pituitary-gonadal axis regulation in vertebrates revealed by knockout medaka. Endocrinol 157(10):3994–4002

    Article  CAS  Google Scholar 

  • Tang H, Liu Y, Luo D, Ogawa S, Yin Y, Li S, Zhang Y, Hu W, Parhar IS, Lin H, Liu X (2015) The kiss/kissr systems are dispensable for zebrafish reproduction: evidence from gene knockout studies. Endocrinology 156(2):589–599

    Article  PubMed  Google Scholar 

  • Voets O, Tielen F, Elstak E, Benschop J, Grimbergen M, Stallen J, Janssen R, van Marle A, Essrich C (2017) Highly efficient gene inactivation by adenoviral CRISPR/Cas9 in human primary cells. PLoS One 12(8):e0182974

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85(1):227–264

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lu B, Li T, Liang G, Xu M, Liu X, Tao W, Zhou L, Kocher TD, Wang D (2021) Nile tilapia: a model for studying teleost color patterns. J Hered 112(5):469–484

    Article  CAS  PubMed  Google Scholar 

  • Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz RW, Edvardsen RB (2016) Dnd knockout ablates germ cells and demonstrates germ cell independent sex differentiation in Atlantic salmon. Sci Rep 6(1):1–8

    Article  Google Scholar 

  • Xiao X, Lin Z, Huang X, Lu J, Zhou Y, Zheng L, Lou Y (2021) Rapid and sensitive detection of Vibrio vulnificus using CRISPR/Cas12a combined with a recombinase-aided amplification assay. Front Microbiol 12:767315

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong S, Wu J, Jing J, Huang P, Li Z, Mei J, Gui JF (2017) Loss of stat3 function leads to spine malformation and immune disorder in zebrafish. Sci Bull 62(3):185–196

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Gao J (2019) Production of a mutant of large-scale loach Paramisgurnus dabryanus with skin pigmentation loss by genome editing with CRISPR/Cas9 system. Transgenic Res 28(3):341–356

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Pham TP, Neupane S (2020) Delivery methods for CRISPR/Cas9 gene editing in crustaceans. Mar Life Sci Technol 2(1):1–5

    Article  CAS  PubMed  Google Scholar 

  • Xue W, Chen S, Yin H, Tammela T, Papagiannakopoulos T, Joshi NS, Cai W, Yang G, Bronson R, Crowley DG, Zhang F (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Yu Y, Tay YX, Yue GH (2022) Genome editing and its applications in genetic improvement in aquaculture. Rev Aquac 14(1):178–191

    Article  Google Scholar 

  • Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, Park A, Yang J, Suresh S, Bizhanova A, Gupta A (2016) Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol 34(3):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You X, Shan X, Shi Q (2020) Research advances in the genomics and applications for molecular breeding of aquaculture animals. Aquaculture 526:735357

    Article  CAS  Google Scholar 

  • Zhang Z, Lau SW, Zhang L, Ge W (2015a) Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 156(10):3747–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhu B, Ge W (2015b) Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29(1):76–98

    Article  PubMed  Google Scholar 

  • Zhang JP, Li XL, Neises A, Chen W, Hu LP, Ji GZ, Yu JY, Xu J, Yuan WP, Cheng T, Zhang XB (2016) Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency. Sci Rep 6(1):28566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhen S, Hua L, Liu YH, Gao LC, Fu J, Wan DY, Dong LH, Song HF, Gao X (2015) Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 22(5):404–412

    Article  CAS  PubMed  Google Scholar 

  • Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, Xu X, Hou Y, Sun X, Yan Y, Wang H (2016) Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep 6(1):1–14

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aich, N., Parhi, J., Mandal, S.C., Sahoo, L. (2023). Application of CRISPR-Cas9 Technology in Fish. In: Behera, B.K. (eds) Biotechnological Tools in Fisheries and Aquatic Health Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-2981-8_2

Download citation

Publish with us

Policies and ethics