[go: up one dir, main page]

Skip to main content

Multi-bubble Coalescence Simulations with Large Density Ratio Using Improved Lattice Boltzmann Method

  • Conference paper
  • First Online:
Advances in Heat Transfer and Thermal Engineering
  • 2594 Accesses

Abstract

This paper simulates the bubble motion characteristics by lattice Boltzmann method in a bubble pump lifting pipe of a lithium bromide absorption refrigeration system. The density ratio of lithium bromide solution to water vapor is as high as 2778. An excessively high density ratio may cause numerical instability in the gas–liquid interface during the simulation processes. In this paper, an improved lattice Boltzmann model (ILBM) is used to solve the velocity fields and the pressure fields to simulate the multi-bubble motions in the lifting pipe. The ILBM is constructed by using a single distribution function to solve the velocity fields and the pressure fields based on free energy model with large density ratio. The simulation results include the coalescence processes, pressure distributions, and velocity distributions of bubbles. In order to investigate the effect of multi-bubble coalescence on the temperature distribution of the flow field, the improved lattice Boltzmann model is also coupled with thermal model. The results show that bubble coalescence is greatly affected by the disturbance of the surrounding flow field and the shape of the bubble is distorted and varies in various forms. In the point of multi-bubble coalescence, the velocity increases, and the pressure and temperature decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. Ammar, S. Joyce, R. Norman, Y. Wang, A.P. Roskilly, Low grade thermal energy sources and uses from theprocess industry in the UK. Appl. Energy 89(1), 3–20, (2012)

    Google Scholar 

  2. Y. Taitel, D. Bornea, A.E. Dukler, Modelling flow pattern transitions for steady upward gas‐liquid flow in vertical tubes. AIChE J. 26(3), 345–354 (1980)

    Google Scholar 

  3. M. Born, H.S. Green, A general kinetic theory of liquids. I. The molecular distribution functions. Proc. Roy. Soc. Londn. 188(1012), 10–18 (1946)

    MathSciNet  MATH  Google Scholar 

  4. G.R. MeNamara, G. Zanetti, Use of the Boltzmann equation to simulate lattice automata. Phys. Rev. Lett. 61(20), 2332–2335 (1988)

    Article  Google Scholar 

  5. F.J. Higuera, J. Jiménez, Boltzmann approach to lattice gas simulations. Europhys. Lett. 9(7), 663–668 (1989)

    Google Scholar 

  6. F.J. Higuera, S. Succi, R. Benzi, Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9(4), 345–349 (1989)

    Article  Google Scholar 

  7. S. Chen, H. Chen, D. Martnez et al., Lattice Boltzmann model for simulation of magnetohydrodynamics. Phys. Rev. Lett. 67(27), 3776–3779 (1991)

    Article  Google Scholar 

  8. Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17(6), 479–484 (1992)

    Article  Google Scholar 

  9. P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Article  Google Scholar 

  10. Q. Zou, S. Hou, S. Chen et al., A improved incompressible lattice Boltzmann model for time-independent flows. J. Stat. Phys. 81(1–2), 35–48 (1995)

    Article  Google Scholar 

  11. Y. Chen, H. Ohashi, M. Akiyama, Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50(4), 2776–2783 (1994)

    Article  Google Scholar 

  12. S. Hou, X. Shan, Q. Zou et al., Evaluation of two lattice Boltzmann models for multiphase flows. J. Comput. Phys. 138(2), 695–713 (1997)

    Article  MathSciNet  Google Scholar 

  13. X. He, S. Chen, R. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999)

    Article  MathSciNet  Google Scholar 

  14. X. He, G.D. Doolen, Thermodynamic foundations of kinetic theory and lattice Boltzmann models for multiphase flows. J. Stat. Phys. 107(1–2), 309–328 (2002)

    Article  Google Scholar 

  15. K.N. Premnath, J. Abraham, Three-dimensional multi-relaxation time (MRT) lattice Boltzmann models for multiphase flow. J. Comput. Phys. 224(2), 539–559 (2007)

    Article  MathSciNet  Google Scholar 

  16. A. Kuzmin, A.A. Mohamad, S. Succi, Multi-relaxation time lattice Boltzmann model for multiphase flows. Int. J. Mod. Phys. C 19(06), 875–902 (2008)

    Article  MathSciNet  Google Scholar 

  17. S. Gong, P. Cheng, Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows. Comput. Fluids 53, 93–104 (2012)

    Article  MathSciNet  Google Scholar 

  18. S. Teng, Y. Chen, H. Ohashi, Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme. Int. J. Heat Fluid Flow 21(1), 112–121 (2000)

    Article  Google Scholar 

  19. T. Inamuro, T. Yokoyama, K. Tanaka et al., An improved lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198(2), 628–644 (2004)

    Article  Google Scholar 

  20. H. Gao, B. Liu, Y. Yan, Numerical simulation of bubbles motion in lifting pipe of bubble pump for lithium bromide absorption chillers. Appl. Therm. Eng. 115, 1398–1406 (2017)

    Article  Google Scholar 

  21. T. Inamuro, Lattice Boltzmann methods for viscous fluid flows and for two-phase fluid flows. Fluid Dyn. Res. 38(9), 641–659 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National NaturalScience Foundation of China (No. 50976015), Liaoning S&T Project (No. 2010224002), and the Fundamental Research Funds for theCentral Universities (3132019305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, H., Ji, X., Hong, J., Song, Y., Yan, Y. (2021). Multi-bubble Coalescence Simulations with Large Density Ratio Using Improved Lattice Boltzmann Method. In: Wen, C., Yan, Y. (eds) Advances in Heat Transfer and Thermal Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-33-4765-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4765-6_64

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4764-9

  • Online ISBN: 978-981-33-4765-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics