Abstract
Free-space optical (FSO) communication is a high-speed technology that can be used to promote rapid deployment of ubiquitous wireless service at the geographical locations such as hilly areas, where radio frequency (RF) technology is inaccessible and laying of optical fibers is not physically and economically viable. FSO has gained significant importance due to several advantages such as extremely high bandwidth, unlicensed spectrum allocation, reduced power consumption about half of the RF, ease of deployment, improved channel security, and reduced size which is one-tenth of the diameter of RF antenna. However, along with many advantages of FSO, atmosphere poses a serious limitation on its performance causing absorption, scattering, scintillations, and atmospheric turbulences. This paper presents a comprehensive review of FSO technology. FSO basics along with its advantages over RF are described so that readers can easily get the concept of shifting from RF to optical communication. Further, the paper also highlights the challenges faced by FSO, various models to characterize atmospheric turbulence fluctuations, issues, and methods to overcome them.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Neha, Kumar, S.: Free space optical communication: a review. Int. J. Electr. Electr. Comput. Syst. (IJEECS) 5(9), 4–8 (2016). ISSN 2348-117X
Chan, V.W.S.: Free-space optical communications. J. Lightwave Tech. 24(12), 4750–4762 (2006)
Popoola, W.O., Ghassemlooy, Z., Lee, C.G., Boucouvalas, A.C.: Scintillation effect on intensity modulated laser communication systems—a laboratory demonstration. J. Opt. Laser Technol. 42(4), 682–692 (2009)
Zhong, W.D., Fu, S., Lin, C.: Performance comparison of different modulation formats over free space optical (FSO) turbulence link with space diversity reception technique. IEEE photon. J. 1(6), 277–285 (2009)
Rajbhandari, S., et al.: On the study of the FSO link performance under controlled Turbulence and Fog atmospheric condition. In: 11th International Conference on Telecommunications, ConTEL, G Raz, Austria, pp. 223–226 (2011)
Borah, D.K., Voelz, D.G.: Pointing error effects on free space optical communication links in the presence of atmospheric turbulence. J. Lightwave Technol. 27(18), 3965–3973 (2009)
Kumar, S., Rathee, S., Arora, P., Sharma, D.: A comprehensive review on fiber bragg grating and photodetector in optical communication networks. J. Opt. Commun. DG Gruyter. 0(0), aop (2019) https://doi.org/10.1515/joc-2018-0205
Bloom, S., Korevaar, E., Schuster, J., Willebrand, H.: Understanding the performance of free-space optics [Invited]. J. Opt. Netw. 2(6), 178–200 (2003)
Williams, W.D., et al.: RF and optical communications: a comparison of high data rate returns from deep space in the 2020 timeframe. In: Technical Report: NASA/TM-2007-214459 (2007)
Neha, Kumar, S.: Role of modulators in free space optical communication. Int. J. Eng. Technol. Manage. Appl. Sci. (IJETMAS) 4(9), 92–96 (2016). ISSN 2349-4476
Henniger, H., Wilfert, O.: An introduction to free-space optical communications. J. Radio Eng. 19(2), 203–212 (2010)
Hansel, G., Kube, E.: Simulation in the design process of free space optical transmission systems. In: Proceedings of the 6th Workshop, Optics in Computing Technology, Paderborn (Germany), pp. 45–53 (2003)
Payal, Kumar, S.: Nonlinear impairments in fiber optic communication systems: analytical review. In: Futuristic Trends in Network and Communication Engineering. FTNCT-2018. Communications in Computer and Information Science, Springer, Singapore, vol. 958, pp. 28–44 (2019) https://doi.org/10.1007/978-981-13-3804-5_3
Popoola, W., Ghassemlooy, Z., Awan, M.S., Leitgeb Piteti E.: Atmospheric Channel Effects on terrestrial free space optical communication link. In: ECAI 2009—International Conference 3rd edn, pp. 17–23 (2009)
Rouissat, M., Borsali, A.R., Chiak-Bled, M.E.: Free space optical channel characterization and modeling with focus on Algeria weather conditions. Int. J. Comp. Netw. Inf. Secur. 3, 17–23 (2012)
Achour, M.: Free-space optics wavelength selection: 10μ versus shorter wavelengths. In: Proceedings of SPIE (SPIE, Bellingham, WA), vol. 5160, pp. 234–246 (2003) https://doi.org/10.1117/12.502483
Awan, M.S., Horwath, L.S., Muhammad, S.S., Leitgeb, E., Nadeem, F., Khan, M.S.: Characterization of fog and snow attenuations for free-space optical propagation. J. Commun. 4(8), 533–545 (2009)
Sandalidis, H.G., Tsiftsis, T.A., Karagiannidis, G.K., Uysal, M.: BER performance of FSO links over strong atmospheric turbulence channels with pointing errors. IEEE Commun. Lett. 12(1), 44–46 (2008)
Willebrand, H., Ghuman, B.S.: Free Space Optics: Enabling Optical Connectivity in Today’s Networks. Sams Publishing (2002)
Mahalati, R.N., Kahn, J.M.: Effect of fog on free-space optical links employing imaging receivers. Opt. Exp. 20(2), 1649–1661 (2012)
Wainright, E., Refai, H.H., Sluss, J.J.: Wavelength diversity in free-space optics to alleviate fog effects. In: Proceedings of SPIE, vol. 5712, pp. 110–118 (2005)
Al Naboulsi, M., Sizun, H., De Fornel, F.: Fog attenuation prediction for optical and infrared waves. Opt. Eng. 43(2), 319–329 (2004)
Kim, I.I., McArthur, B., Korevaar, E.: Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In: Proceedings of SPIE, vol. 4214, Boston, MA, USA (2001)
Grabner, M., Kvicera, V.: Fog attenuation dependence on atmospheric visibility at two wavelengths for FSO link planning. In: 2010 Loughborough Antennas & Propagation Conference, Loughborough, pp. 193–196 (2010)
Ijaz, M., Ghassemlooy, Z., Rajbhandari, S., Le Minh, H., Perez, J., Gholami, A.: Comparison of 830 nm and 1550 nm based free space optical communications link under controlled fog conditions. In: 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP), Poznan, pp. 1–5 (2012)
Andrej, L., et al.: Features and range of the FSO by use of the OFDM and QAM modulation in different atmospheric conditions. In: Proceedings of SPIE, vol. 9103, Wireless Sensing, Localization, and Processing IX, 91030O, pp. 1–10 (2014)
Ali, M., Ali, A.: Performance analysis of fog effect on free space optical communication system. IOSR J. Appl. Phys. 7(2), 16–24 (2015)
Fadhil, H.A., et al.: Optimization of free space optics parameters: an optimum solution for bad weather conditions. Optik 124(19), 3969–3973 (2013)
Rahman, A.K., Anuar, M.S., Aljunid, S.A., Junita, M.N.: Study of rain attenuation consequence in free space optic transmission. In: Proceedings of the 2nd Malaysia Conference on Photonics Telecommunication Technologies (NCTT-MCP ’08), pp. 64–70, IEEE, Putrajaya, Malaysia (2008)
Suriza, A.Z., Rafiqul, I.M., Wajdi, A.K., Naji, A.W.: Proposed parameters of specific rain attenuation prediction for free space optics link operating in tropical region. J. Atmos. Solar Terres. Phys. 94, 93–99 (2013)
Vavoulas, A., Sandalidis, H.G., Varoutas, D.: Weather effects on FSO network connectivity. J. Opt. Commun. Netw. 4(10), 734–740 (2012)
Crane, R.K., Robinson, P.C.: ACTS propagation experiment: rain-rate distribution observations and prediction model comparisons. Proc. IEEE 86(6), 946–958 (1997)
Al Naboulsi, M., Sizun H., De Fornel F.: Propagation of Optical and Infrared Waves in the Atmosphere. http://www.ursi.org/proceedings/procga05/pdf/F01P.7(01729).pdf
Al-Gailani, S.A., Mohammad, A.B., Shaddad, R.Q.: Enhancement of free space optical link in heavy rain attenuation using multiple beam concept. Opt. Int. J. Light Electron Opt. 124(21), 4798–4801 (2013)
Andrews, L.C., Phillips, R.L., Hopen, C.Y.: Laser Beam Scintillation with Applications. SPIE Press (2001)
Ghassemlooy, Z., Popoola, W.O.: Terrestrial free-space optical communications. Optical Communications Research Group, NCR lab, Northumria University, Newcastle upon Tyne, 5(7), 195–212 (2014)
Andrews, L.: Field Guide to Atmospheric Optics. SPIE Press (2004)
Popoola, W.O., Ghassemlooy, Z.: BPSK subcarrier intensity modulated free-space optical communications in atmospheric turbulence. J. Lightwave Technol. 27(8), 967–973 (2009)
Perlot, N., Fritzsche, D.: Aperture-averaging, theory and measurements. In: Proceedings of SPIE, Free-Space Laser Communication Technologies XVI, vol. 5338, pp. 233–242 (2004)
Wasiczko, L.M., Davis, C.C.: Aperture averaging of optical scintillations in the atmosphere: experimental results. In: Proceedings SPIE, Atmospheric Propagation II, vol. 5793, pp. 197–208 (2005)
Zhu, X., Kahn, J.M.: Maximum-likelihood spatial-diversity reception on correlated turbulent free-space optical channels. In: IEEE Conference Global Communication, San Francisco, CA, vol. 2, pp. 1237–1241 (2000)
Payal, Kumar, S., Sharma, D.: Performance analysis of NRZ and RZ modulation schemes in optical fiber link using EDFA. Int. J. Adv. Res. Comput. Sci. Softw. Eng. (IJARCSSE) 7(8), 161–168 (2017). https://doi.org/10.23956/ijarcsse/v7i8/0102
Payal, Sharma, D., Kumar, S.: Analyzing EDFA performance using different pumping techniques. Int. J. Comput. Sci. Eng. 6(5), 195–202 (2018). https://doi.org/10.26438/ijcse/v6i5.195202
Deepti, Payal, Kumar, S.: Performance evaluation of proposed WDM optical link using EDFA and FBG combination. J. Opt. Commun. DG Gruyter, 0(0), aop (2018). https://doi.org/10.1515/joc-2018-0044
Sharma, D., Kumar, S.: Design and evaluation of OFDM based optical communication network. J. Eng. Appl. Sci. 12(Special Issue 2), 6227–6233 (2017). https://doi.org/10.3923/jeasci.2017.6227.6233
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Payal, Kumar, S. (2020). Free-Space Optics: A Shifting Paradigm in Optical Communication Systems in Difficult Terrains. In: Luhach, A., Kosa, J., Poonia, R., Gao, XZ., Singh, D. (eds) First International Conference on Sustainable Technologies for Computational Intelligence. Advances in Intelligent Systems and Computing, vol 1045. Springer, Singapore. https://doi.org/10.1007/978-981-15-0029-9_43
Download citation
DOI: https://doi.org/10.1007/978-981-15-0029-9_43
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0028-2
Online ISBN: 978-981-15-0029-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)