Abstract
In recent years, DNA strand displacement technology has developed rapidly with the advantages of high-performance parallel computing and large information capacity. DNA strand displacement technology is a dynamic DNA nanotechnology developed on the basis of DNA self-assembly technology. DNA strand displacement technology can realize dynamic connection between input signal and output signal, and it is a method for constructing logic gates and logic circuits. According to the basic principle of DNA strand displacement, this paper studies the specific function of the molecular logic circuit model, and constructs a logic circuit with three input and nine output. Then a biochemical logic circuit is built based on the dual-rail thought and the construction of seesaw gate. Finally, DNA strand displacement simulation platform Visual DSD is used to verify the rationality of the model. It lays the foundation for constructing complex logic circuits.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Grzelczak, M., Vermant, J., Furst, E.M., Liz-Marzan, L.M.: Directed self-assembly of nanoparticles. ACS Nano 4(7), 3591–3605 (2010)
Modi, S., Bhatia, D., Simmel, F.C., Krishnan, Y.: Structural DNA nanotechnology: from bases to bricks, from structure to function. J. Phys. Chem. Lett. 1(13), 1994–2005 (2010)
Wing, J.M.: Computational thinking and thinking about computing. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008)
Kitano, H.: Computational systems biology. Nature 420(6912), 206 (2002)
Ezziane, Z.: DNA computing: applications and challenges. Nanotechnology 17(2), R27 (2005)
Bakar, R.B.A., Watada, J., Pedrycz, W.: DNA approach to solve clustering problem based on a mutual order. Biosystems 91(1), 1–12 (2008)
Seeman, N.C.: DNA in a material world. Nature 421(6921), 427 (2003)
Thiruvengadathan, R., Korampally, V., Ghosh, A., Chanda, N., Gangopadhyay, K., Gangopadhyay, S.: Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. Rep. Progress Phys. 76(6), 066501 (2013)
Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C.: Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc. 136(47), 16469–16472 (2014)
Orbach, R., Guo, W., Wang, F., Iioubasherski, O., Willner, I.: Self-assembly of luminescent Ag nanocluster-functionalized nanowires. Langmuir 29(42), 13066–13071 (2013)
Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103 (2011)
Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)
Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368 (2011)
Linko, V., Dietz, H.: The enabled state of DNA nanotechnology. Curr. Opin. Biotechnol. 24(4), 555–561 (2013)
Lin, J., Dyer, C.: Data-intensive text processing with mapreduce. Synth. Lect. Hum. Lang. Technol. 3(1), 1–177 (2010)
Ito, H., Konishi, R., Nakada, H., Tsuboi, H., Okuyama, Y., Nagoya, A.: Dynamically reconfigurable logic LSI: PCA-2. IEICE Trans. Inf. Syst. 87(8), 2011–2020 (2004)
Maojo, V., Martin-Sanchez, F., Kulikowski, C., Rodriguez-Paton, A., Fritts, M.: Nanoinformatics and DNA-based computing: catalyzing nanomedicine. Pediatr. Res. 67(5), 481 (2010)
Zang, L., Che, Y., Moore, J.S.: One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc. Chem. Res. 41(12), 1596–1608 (2008)
Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)
Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297 (2006)
Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131(47), 17303–17314 (2009)
Zhang, D.Y., Hariadi, R.F., Choi, H.M.T., Winfree, E.: Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4, 1965 (2013)
Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2007)
Li, W., Yang, Y., Yan, H., Liu, Y.: Three-input majority logic gate and multiple input logic circuit based on DNA strand displacement. Nano Lett. 13(6), 2980–2988 (2013)
Genot, A.J., Bath, J., Turberfield, A.J.: Reversible logic circuits made of DNA. J. Am. Chem. Soc. 133(50), 20080–20083 (2011)
Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129(48), 14875–14879 (2007)
Wang, Y., Tian, G., Hou, H., Ye, M., Cui, G.: Simple logic computation based on the DNA strand displacement. J. Comput. Theor. Nanosci. 11(9), 1975–1982 (2014)
Bath, J., Turberfield, A.J.: DNA nanomachines. Nature Nanotechnol. 2(5), 275 (2007)
Acknowledgments
The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R&D Program of China for International S&T Cooperation Projects (No. 2017YFE010 3900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, Y., Yuan, G., Huang, C., Sun, J. (2018). Complex Logic Circuit of Three-Input and Nine-Output by DNA Strand Displacement. In: Qiao, J., et al. Bio-inspired Computing: Theories and Applications. BIC-TA 2018. Communications in Computer and Information Science, vol 952. Springer, Singapore. https://doi.org/10.1007/978-981-13-2829-9_26
Download citation
DOI: https://doi.org/10.1007/978-981-13-2829-9_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-2828-2
Online ISBN: 978-981-13-2829-9
eBook Packages: Computer ScienceComputer Science (R0)